
LDAP Programming, Management
and Integration

LDAP Programming,
Management and
Integration

CLAYTON DONLEY

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-40-5
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03

contents

preface xi
acknowledgments xv
about this book xvi
getting started xix
about the cover illustration xxii

Part 1 Fundamental LDAP concepts 1

1 Introduction to LDAP 3
1.1 What LDAP is 4

Directory services and directory servers 4 ✦ LDAP and directory
services 4 ✦ Other directory services 5

1.2 What LDAP is not 7
LDAP is not a relational database 7 ✦ LDAP is not a file system for
very large objects 7 ✦ LDAP is not optimal for very dynamic objects 9
LDAP is not useful without applications 9

1.3 Current applications 10
White pages 10 ✦ Authentication and authorization 12
Personalization 13 ✦ Roaming profiles 14 ✦ Public Key
Infrastructure 14 ✦ Message delivery 15

1.4 Brief history 15
X.500 and DAP 15 ✦ A new standard is born 16
LDAP goes solo 17 ✦ LDAPv3 18

1.5 LDAP revisions and other standards 18
Replication and access control 19 ✦ Directory Enabled
Networking 21 ✦ XML and directories 22

1.6 Directory management 23

1.7 Directory integration 24
Integration via metadirectories 27
v

1.8 Integration and federation via virtual directory technology 30

1.9 Why this book? 31

1.10 Summary 32

2 Understanding the LDAP information model 34
2.1 Information model overview 35

Entries 35 ✦ Attributes 36 ✦ LDAP entries vs. database records 36

2.2 Working with LDAP schema 37
Standard LDAP schema 37

2.3 Attribute types 39
Defining attribute types 39 ✦ Syntax definitions 40 ✦ Matching rules for
attributes 41 ✦ Support for multiple values 43 ✦ Inheritance 44
User modification 45 ✦ Variables in Java, Perl, and C 45

2.4 Object classes 46
Defining object classes 46 ✦ Required and allowed attributes 47
Object class inheritance 47 ✦ Multiple object class memberships 48
Object class types 48 ✦ LDAP object classes and Java or C++ classes 50

2.5 Using object modeling to design LDAP schema 51
Modeling classes 51 ✦ Modeling relationships 51
Modeling object instances 53

2.6 Summary 54

3 Exploring the LDAP namespace 55
3.1 What is a namespace? 56

Hierarchical namespaces 57

3.2 Specifying distinguished names 59
Choosing a relative distinguished name attribute 60
Determining the base 62

3.3 Assigning the root naming context 64
Traditional style of assigning the root name context 64
Domain component style of assigning the root name context 65

3.4 Selecting and designing a directory tree 65
Intranet directories 66 ✦ Internet directories 69 ✦ Extranet directories 71

3.5 Summary 74

4 Search criteria 75
4.1 Performing a search 76

4.2 Where to search: base and scope 76
Search base 76 ✦ Search scope 77
vi CONTENTS

4.3 What to evaluate: search filters 78
Presence filters 79 ✦ Exact equality filters 80 ✦ Substring matching 81
Ordered matching (greater than/less than) 83 ✦ Approximate filters 84
Multiple filters: AND and OR operators 84 ✦ Negative filters: the NOT
operator 86 ✦ Extensible searching and matching rules 86

4.4 What to return: the attribute return list 87

4.5 LDAP search criteria vs. SQL queries 87
Similarities between SQL SELECT and LDAP search criteria 88
Differences between SQL SELECT and LDAP search criteria 88

4.6 Increasing search performance 88

4.7 Summary 89

5 Exchanging directory information 90
5.1 Representing directory information outside the directory 91

5.2 LDAP Data Interchange Format 92
Expressing entries in basic LDIF 92 ✦ Writing LDAP changes
as LDIF 94 ✦ Representing schemas in LDIF 95 ✦ Advantages
and disadvantages of LDIF 96

5.3 Directory Services Markup Language 96
Why use DSML? 96 ✦ Getting started with DSML 98
A DSML example 98 ✦ Handling binary values in DSML entries 99
Entry changes and DSML 100

5.4 Defining directory schemas with DSML 100
DSML object classes 100 ✦ DSML attribute types 101

5.5 XSLT and DSML 102
Converting DSML to HTML using XSLT 102

5.6 Summary 104

Part 2 LDAP management 105

6 Accessing LDAP directories with Perl 107
6.1 LDAP access from Perl 108

6.2 Getting started with Net::LDAP 109
Using the module 109 ✦ Opening a connection 109
Binding to the directory 110

6.3 Searching with Net::LDAP 111
Performing a search 111 ✦ Understanding search scopes 113
LDAP search filters 115 ✦ Using search results 115 ✦ Limiting
attribute retrieval 115 ✦ Handling referrals 116
CONTENTS vii

6.4 Manipulating entries 116
Updating an entry 116 ✦ Adding new entries 117
Deleting an entry 117 ✦ Renaming an entry 117

6.5 Comparing entries 118

6.6 Handling errors 119

6.7 Support for encrypted/SSL connections 119

6.8 Summary 120

7 Managing directory entries, groups, and accounts 121
7.1 Common types of managed entries 122

7.2 Entry management models 122
Centralized administration 122 ✦ Distributed administration 124
User self-administration/self-service 125

7.3 Creating people entries 126
People entries via a web form 127 ✦ People entries based on
existing data 130 ✦ Summary of creating entries 134

7.4 Creating and maintaining groups 134
Explicit groups 135 ✦ Dynamic groups and LDAP URLs 136

7.5 Representing and managing account information 136
Unix user accounts 137 ✦ Linking Unix accounts to people 141

7.6 Managing other information 142
Security services information 142 ✦ DNS information 142 ✦ Directory
Enabled Networking information 143 ✦ Card catalog information 143

7.7 Summary 143

8 Synchronizing LDAP information 144
8.1 Approaches to data flow management 145

Replication 145 ✦ File export/import 146 ✦ Scripting 146

8.2 Data flow analysis 146
Schema mapping 147 ✦ Determining the authoritative source 147
Data transformation 148 ✦ Namespace translation 149

8.3 Interchange formats 150
LDAP Data Interchange Format 150
Directory Services Markup Language 151

8.4 Migration to LDAP 152
Migrating a simple table 152 ✦ Migrating from multiple sources 154
Adding new information to existing entries 157

8.5 Joining related information 159
Multikey matches 159 ✦ Fuzzy matching 160
viii CONTENTS

8.6 Synchronization 162
Synchronization to LDAP 162 ✦ Synchronization from LDAP 163
Bidirectional synchronization 166

8.7 Summary 167

9 Accessing operational information in LDAP 168
9.1 Getting server information 169

Retrieving available root naming contexts 169 ✦ Extracting object class
information 170 ✦ Getting attribute type details 174

9.2 Monitoring with LDAP 178
Getting the monitor’s name 178 ✦ Reading the monitor information 178
Polling the monitor entry 180

9.3 Testing replication 181

9.4 Summary 184

10 DSML: getting under the hood 185
10.1 DSML parsing with SAX 186

Basics of parsing XML with SAX 186 ✦ A simple XML parser handler 186
Parsing a simple document 188 ✦ PerlSAX’s built-in error checking 189

10.2 Parsing DSML into a Perl object 190
Beginnings of a useful DSML parser handler 192 ✦ Handling elements in
the DSML file 193 ✦ Extracting characters between start and end tags 194
Preparing to use DSMLHandler 194 ✦ Invoking the SAX parser using
DSMLHandler 194

10.3 Generating DSML 196
Writing directory entries 196 ✦ Converting RFC-style LDAP schemas to
DSML LDAP schemas 199 ✦ Conversion example for object classes 199
Converting attribute types 204

10.4 Using Perl to convert DSML with XSLT 208
Converting DSML to HTML 209

10.5 Summary 211

Part 3 Application integration 213

11 Accessing LDAP directories with JNDI 215
11.1 Introduction to JNDI 216

JNDI versus the LDAP Java SDK 216

11.2 JNDI architecture 216
JNDI providers 217 ✦ The JNDI package 217
CONTENTS ix

11.3 JNDI operations: the DirContext class 217
Handling basic exceptions 218 ✦ Closing the connection 218
Binding to the directory 218 ✦ A reusable LDAP connection handler 219

11.4 Searching with JNDI 220
Abstracting the entry 221 ✦ A search class 223

11.5 Adding entries 226
A simple add example 226 ✦ A generalized add example 227

11.6 Manipulating entries 229
Modifying entries 229 ✦ Deleting entries 230 ✦ Renaming entries 231

11.7 Summary 232

12 Java programming with DSML 233
12.1 Writing DSML with Java 234

12.2 DSML with JNDI 235
Automatic DSML output from LDAP URLs 236

12.3 Working with schemas in DSML 237
Reading schemas with SAX 238 ✦ Designing a basic SAX handler 240

12.4 Transformation with XSLT in Java 244

12.5 Enhancements with DSMLv2 248
Implementing interapplication communication 249 ✦ Creating DSMLv2
SOAP requests 249 ✦ Creating DSMLv2 SOAP requests with JNDI 252

12.6 Summary 252

13 Application security and directory services 253
13.1 The relationship between security and directories 254

What is security? 254 ✦ How LDAP provides security 256

13.2 Storing key and certificate data 259
Preshared secret keys 259 ✦ Public/private key pairs 261

13.3 Using digital certificates 262
Creating a digital certificate in Java 263
Storing and distributing digital certificates 264

13.4 Managing authorization information 268
Understanding access control rules 268 ✦ Directory authorization 269
Application authorization 269

13.5 Encrypting LDAP sessions using JNDI and SSL 270

13.6 Summary 271

A: Standard schema reference 273

B: PerLDAP 302

index 317
x CONTENTS

preface

This book will help you understand and use the most important directory services—
those based on the leading industry standards—without having to read the many eso-
teric standards documents available on the Web. I am tempted to start the book with
a motivating example from my experience to explain why directory services are so
important and why you should read this book from cover to cover, but I will resist.
There is no need to tell a story from my experience, because I can tell a story from
your experience. Every single one of you has had experience with directory services,
whether you know it or not.

Did you log in to a computer today? When the computer checked your password,
it was probably using a directory service.

Do you use a personalized start page, such as Netscape Netcenter? If so, your pref-
erences and login information were found in a directory service and used to customize
your experience.

Have you ever looked up the email addresses of long-lost friends on the Internet,
or located the telephone number of the woman in receiving who can track down your
lost package? Both of these tasks are also common uses for directories.

However, you don’t need to learn how to type someone’s name into a search
engine or enter your password. What you do need to learn, and what this book will
teach you, is how to apply the standards that make directory services accessible over
computer networks ranging from the Internet to your corporate intranet to business
partners’ extranets.

We won’t stop there. The most pressing issue in the area of directory services today
is simply that there are so many of them. Every application written in the last 30 years
seems to have come with its own proprietary directory. Operating systems also have
directories. Most of these directories don’t care about each other or even acknowledge
the others’ existence. This book will help you get these existing directories to work well
with new, important standards-based directory services.

Finally, what good is a data repository without useful applications? If you are an
application developer trying to get your existing applications to work with Light-
weight Directory Access Protocol (LDAP), Directory Services Markup Language
(DSML), and other directory standards, this book not only will help you get a handle
xi

on important application program interfaces (APIs), but also will deliver an under-
standing of the best strategies for using these applications to derive important appli-
cation benefits.

WHO AM I, AND WHAT’S MY MOTIVATION?

Many of the people picking up this book may know my reputation as a long-time
developer in the directory space. My background in this area includes writing the first
comprehensive Perl module for accessing directory services via LDAP, as well as writ-
ing software for getting applications such as Apache, the Squid proxy server, and
Cyrus mail servers to check passwords against servers supporting LDAP.

My recent work in this area has included the development of complete Java server
software for providing data via the LDAP protocol. The server, originally a part-time
open source project, is now the cornerstone of a virtual directory and proxy service
product offering from OctetString. However, this book is vendor neutral; all major
LDAP vendors are discussed to some extent in the first chapter.

Like many of you, I stumbled onto LDAP by accident. In 1993, I was employed
as part of Motorola’s Cellular Infrastructure Group in Arlington Heights, Illinois.
Along with a small group of other colleagues, I cofounded one of Motorola’s first web-
based intranets.

Unlike today, when most major web sites are dynamic and filled to the brim with
personalized content and real-time access to databases and important applications,
there were few web-based applications in those days. Sensing the potential use of this
new technology, yet realizing that this grass-roots project would not receive funding
if we couldn’t adequately expose business information, many team members pro-
ceeded to develop applications, such as card catalogs for engineering documents and
similar things.

I decided that my small project would be an email directory. As the only person
on this project from the IT organization, I was aware of a service provided by corporate
mainframes that presented information culled from human resources and local area
network (LAN) administrators over a simple protocol called WHOIS.

Using WHOIS, you could open a simple network connection to the server (which
in this case resided on a mainframe) and type the data to be used for searching. The
search results were returned as free-form text. My application did nothing more than
read this text, parse it, and write it out as HTML that could be displayed graphically
by a web browser.

It was an instant hit.
I became known at Motorola Cellular as the “directory” guy, and was instantly

pushed onto most of the projects that dealt with directories. At the time, these projects
primarily related to email. Email is an important use of directories—after all, if you
cannot locate the address of people with whom you need to communicate, a large email
infrastructure doesn’t do much good. However, I began to realize that this directory
xii PREFACE

wasn’t just a way to look up information; it was a key storage point for identity infor-
mation—the only network-accessible place in the company where a person’s email
address, login ID, department, name, and manager were linked together. I realized that
smart applications could use this information to identify users throughout the com-
pany and authorize them based on criteria, such as their department. Those applica-
tions could also provide customized presentations based on that same information.

I also knew that as good as this idea was, it would be hard to execute given the lim-
itations of WHOIS, unless we customized each application. At this time, I came into
contact with X.500.

Like WHOIS, X.500 is a standard for a kind of directory service. Unlike WHOIS,
X.500 is anything but simple. It is a detailed set of standards definitions that seems
to describe everything within a 10-mile radius of directory services, including client
access, real security, server-to-server communications, and similar areas. Also unlike
WHOIS, X.500 comes from the OSI networking world, which was left in the dust in
the wake of the Internet explosion and the mass adoption of loosely networked systems
built around standards such as TCP/IP.

Nearly every book or article written about LDAP talks about X.500 being perfect
except for that dastardly OSI protocol stack, which makes deployment on desktop-
class hardware difficult. (Although there is truth to this reasoning, the real reason most
X.500 directory projects didn’t take off is that getting the right data into the directory
and keeping it up-to-date was difficult—after all, garbage in, garbage out. Similarly,
few applications were X.500 aware, partly due to its complexity.) This difficulty
spawned LDAP, which was meant to replace X.500’s Directory Access Protocol (DAP)
as a client implementation.

After making the move from X.500 to LDAP for the same published reasons every-
one else did, the lack of integration tools and directory-enabled applications was obvi-
ous. So, I created things like Net::LDAPapi and PerLDAP to glue together information
from different sources into the directory. Not long afterward, I wrote the code that
allowed users to be identified and authorized to many services, such as web, proxy,
and mail.

Today many applications are directory-enabled—so many that these applications
drive most new directory deployments, rather than the other way around. People look-
ing at deploying and accessing directories are faced with many difficult choices in
design and execution. My goal for this book is to help simplify this complex technol-
ogy in a way that accelerates your projects and improves your end results.

LESSONS LEARNED, AND THIS BOOK’S FOCUS

Since discovering LDAP, I’ve spent nearly every day looking to develop solutions to
these types of problems. Much of the time, the solution is centered on creating enter-
prise directory services. I’ve learned a few things about creating successful directory
services. The most critical are:
PREFACE xiii

• Access is access.

• Configuration is trivial; management is complex.

Although these may seem like insanely simple lessons, let me explain.

Access is access

Certain methods of access may be more efficient or provide more underlying func-
tionality, but at the end of the day, it is only important that the directory service can
share information in a way that clients and applications can use. Today, that standard
for sharing information in directory services is LDAP. Therefore, we use LDAP as the
primary access protocol throughout this book.

However, many of the more advanced techniques described in parts 2 and 3 of this
book will work just as well with another means of access. In fact, part 3 describes the
use of Directory Services Markup Language (DSML), which you can use to represent
directory services information as XML.

Configuration is trivial; management is complex

This is not to say that your mother should be installing and configuring your direc-
tory servers. It is merely an indication of the relative complexity of configuration ver-
sus management.

I cannot stress enough that unless the directory is running in a stand-alone envi-
ronment where it is the only source of data, there will be effort in getting information
into and out of the directory. Unless you understand and make this effort up front,
the data in the directory will either be stale and useless or require yet another manual
administrative process to keep it up to date.

New technology is coming out that removes some of the technical barriers to splic-
ing information into authoritative directories. However, such technology does not
remove the internal political roadblocks and the need for up-front planning that is
required in nearly all meaningful directory service deployments.
xiv PREFACE

acknowledgments

Creating a quality technology book involves a great deal of effort from many talented
and passionate individuals. There is simply no way to thank all of those involved
enough for their efforts in making this book as good as it could possibly be.

I must start by thanking my wife Linda for her support in this endeavor. Without
her patience and strong support, this book certainly would never have been completed.
A few weeks before the book went to press, we received the special delivery of our son
Ethan, who was certainly an inspiration as the book’s development came to a close.

Too many people to name looked at bits and pieces of this book. Some of the peo-
ple who looked through early drafts were Kurt Zeilenga of the OpenLDAP project, La
Monte Yaroll of Motorola, Booker Bense of Stanford, Jay Leiserson and Richard
Goodwin of IBM, Jauder Ho of KPMG, Ranjan Bagchi, Juan Carlos Gomez and Raul
Cuza. Nathan Owen of IBM and Phil Hunt of OctetString also offered some very
helpful feedback on several key sections later in the development cycle.

Extra special thanks go to Booker Bense, who did a detailed final review of the
entire text and made a number of quality suggestions that I feel contributed to the
technical accuracy and readability of the book. Don Bowen of Sun was also especially
helpful in his review of key sections of the book as it neared completion.

Many people at Manning Publications were incredible throughout the process.
Marjan Bace and Mary Piergies were on top of this project with their full attention
and enthusiasm from the start. Lianna Wlasiuk was phenomenal as a development edi-
tor and offered many significant ideas that vastly improved the final content of the
book. Tiffany Taylor did a fantastic job of editing the text and removing all of the
embarrassing errors that I left behind. Dottie Marsico had the Herculean task of mak-
ing sense of a vast number of graphics in a myriad formats, among other things. Syd
Brown came up with the book’s wonderful design, and Leslie Haimes did a great job
putting together a captivating cover. Ted Kennedy did a masterful job of staying on
top of the entire review process.

Finally, a special thanks to everyone I’ve emailed or spoken with over the years
about this technology. These discussions helped shape much of the thinking that went
into this book. So much was learned from sharing information with the users of the
LDAP-related technology I’ve developed. This learning and interaction was truly a
reward for any effort on my part.
xv

about this book

Part 1 of the book has five chapters:

• Chapter 1 introduces core LDAP concepts, with the understanding that you may
have little or no past exposure to the protocol.

• Chapter 2 introduces LDAP’s information model and schema. Information in
an LDAP-enabled directory is presented in a simple and uniform way that you
should understand before proceeding. This chapter covers object classes,
attribute types, and schema standards.

• Chapter 3 offers information about LDAP namespace and naming standards.
Because all entries in LDAP are uniquely named, it’s important for you to
understand the information in this chapter.

• Chapter 4 provides an overview of LDAP search criteria. Because searching is
the most commonly used and most complex LDAP operation from a client per-
spective, we spend considerable time introducing and explaining filters, scope,
and search bases.

• Chapter 5 introduces the LDAP Data Interchange Format (LDIF) and the
Directory Services Markup Language (DSML), an XML standard for represent-
ing directory information, and shows how these standards can be used to easily
store and share directory information.

Part 2 is as follows:

• We begin exploring LDAP management in chapter 6. This chapter introduces the
Net::LDAP module, which lets you use Perl to access and manage an LDAP-
enabled directory.

• In chapter 7, we discuss administrative techniques. Examples include a web-
based tool that you can use to manage individual entries.

• Chapter 8 offers insights into synchronization and migration. No data exists in
a vacuum, so this chapter provides guidance about some of the ways data in
other directories and databases can be leveraged in an LDAP environment.
xvi

• Chapter 9 explains how to monitor and manage information about the LDAP
server. Examples include schema retrieval scripts and tools for generating syn-
thetic transactions that can be used to check server availability.

• Chapter 10 expands on our previous discussion of DSML. Many examples are
provided, in Perl, including ones for generating DSML and transforming it to
HTML using XSLT.

Part 3 comprises the book’s final three chapters:

• In chapter 11, we begin discussing the best methods for directory-enabling your
applications. This chapter offers an introduction to the Java Naming and Direc-
tory Interface (JNDI), an API for accessing directory services based on many stan-
dards, including LDAP.

• In chapter 12, we refocus on DSML in an application context. Examples are
given that relate DSML to other technologies, such as web services and SOAP.
An exploration of DSML version 2 operations is also provided.

• Security ranks with messaging as a critical area for directory integration. For
that reason, we spend chapter 13 going over authentication, authorization, dig-
ital certificate storage, and LDAP security issues in general.

The book ends with two appendixes:

• Appendix A provides a compilation of standard schemas from Request for Com-
ments (RFCs), Internet Drafts, and other sources that you should consider prior
to the creation of new schemas. The LDAP schema is discussed in chapter 2.

• PerLDAP is a popular alternative to the Net::LDAP module discussed in part 2.
Appendix B offers an overview of PerLDAP and translation of many of the
examples in part 2.

WHO SHOULD READ THIS BOOK

This book is written for network and system administrators, as well as application
developers. Little or no past LDAP exposure is required.

Part 1 of this book uses command-line tools to demonstrate LDAP features. Part 2
provides examples in Perl that can be used unmodified in many cases or as the basis
for more advanced tools.

Finally, part 3 of the book is focused on application development issues with exam-
ples in Java. Although less directly useful to system and network administrators, it cov-
ers many important aspects of directory-enabled application development.

AUTHOR ONLINE

When you purchase LDAP Programming, Management and Integration you gain free
access to a private web forum run by Manning Publications where you can make
ABOUT THIS BOOK xvii

comments about the book, ask technical questions, and receive help from the author
and from other users. To access the forum and subscribe to it, point your web
browser to www.manning.com/donley. This page provides information on how to get
on the forum once you are registered, what kind of help is available, and the rules of
conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.

SOURCE CODE

Source code for all examples presented in LDAP Programming, Management and
Integration is available for download from www.manning.com/donley.

Code conventions

Courier typeface is used for code examples. Bold Courier typeface is used in
some code examples to highlight important or changed sections. Certain references to
code in text, such as functions, properties, and methods, also appear in Courier
typeface. Code annotations accompany some segments of code.
xviii ABOUT THIS BOOK

getting started

Throughout this book, examples are provided wherever possible. This section details
where to get the tools you will need to use the examples.

DIRECTORY SERVERS

A directory server supporting LDAP is required to run these examples. The examples
should work with almost any LDAP-enabled directory server, except where noted
prior to the example.

This book is about getting the most from directory services, not installing and con-
figuring all the directories on the market. Following are pointers to some of the more
common directory servers available at the time of publication. Additionally, we
include basic instructions for obtaining a special LDAP server that has been precon-
figured to work with the examples in this book.

Directory server vendors

The LDAPZone (http://www.ldapzone.com) web site is a good place to begin when
you’re looking for answers to many directory issues. It has active community pages
and links to other sites related to LDAP. It also has links to the most popular LDAP
server implementations.

Among the servers currently listed are

• Novell eDirectory

• iPlanet Directory Server

• Oracle Internet Directory

• Critical Path InJoin Directory Server

• Microsoft Active Directory

• IBM SecureWay Directory

• Open Source OpenLDAP Directory

• Data Connection Directory

• OctetString Virtual Directory Engine
xix

Each of these vendors provides a server that is directly LDAP accessible, with solid
documentation for installation and configuration.

Basic configuration parameters

The examples in this book assume the server will be listening on TCP port 389,
which is the standard LDAP port. This is usually easily configurable within the server,
although certain implementations (such as Microsoft Active Directory) cannot be
configured to listen on a different port.

The root of the directory tree used in the examples is dc=manning,dc=com.
This will be acceptable to most implementations, but some older servers may not be
aware of dc-style naming. If that is the case, substituting o=manning,c=us or any
other name for the root in configuration and examples should be acceptable. You can
find more information about naming and directory trees in chapter 3.

Most of the examples in this book use standard schemas related to people and
groups that can be found in virtually all LDAP implementations. If an example pro-
duces an error related to a schema violation, you may need to add the schema being
referenced by that example. Different directories have different files and configuration
options for adding new schemas.

COMMAND-LINE TOOLS

In part 1 of the book, no programming languages are used. Instead, we use com-
monly available LDAP tools to demonstrate key components of LDAP, such as infor-
mation model, entry naming, and search filters. These tools come with many
operating systems, such as Solaris and some Linux variants. They are also distributed
with many directory server products.

You can determine if the tools are available by attempting to run commands such
as ldapmodify and ldapsearch. If these commands exist, they should be suitable
for the examples in this book.

The source code to these tools can be found in at least two places:

• The OpenLDAP project (www.openldap.org)

• The Mozilla Directory project (www.mozilla.org/directory/)

Both of these versions are suitable for use with the examples in this book.
If you prefer to download precompiled versions of these tools, you can most easily

obtain them as part of the iPlanet Directory Software Development Kit (SDK). This
kit is available at http://www.iplanet.com/downloads/developer/.

LDAP PERL MODULES

Part 2 of this book, which focuses on directory management, uses the Perl language
to populate, synchronize, and otherwise manage information in directories. These
examples require a modern version of Perl (at least 5.005 is required, but 5.6 or
xx GETTING STARTED

higher is recommended) and the Perl-LDAP module. This is not to be confused with
PerLDAP, which is the module previously released by Netscape and the author of this
book. Although both modules do the same job, Perl-LDAP is becoming more widely
used; and, because it is completely written in Perl, it is portable to any platform where
Perl is available.

The Perl-LDAP module is written and maintained by Graham Barr and can be
found at perl-ldap.sourceforge.net along with detailed installation instructions.

Active State Perl users can use these commands to install the necessary module
automatically:

C:\ >ppm
PPM interactive shell (2.1.6) - type 'help' for available commands.
PPM> install perl-ldap

Users of other versions of Perl can access the module on the Comprehensive Perl
Archive Network (CPAN) (http://www.cpan.org).

JAVA

Java is used extensively throughout part 3 of this book. We use core Java functional-
ity found in J2SE as well as extensions for communicating with LDAP and parsing
XML/DSML.

Java LDAP Access

There are two primary ways to access LDAP in Java:

• Java Naming and Directory Interface (JNDI)—You can use this generalized inter-
face to access LDAP and non-LDAP directory and naming services.

• Netscape Java SDK—This set of Java classes was created specifically to talk to
directory servers via the LDAP protocol.

This book uses JNDI. JNDI comes standard as part of Java development kits and
runtimes at or above the 1.3 version. It is available for download at java.sun.com for
earlier Java development kits.

DSML/XML

The examples in chapter 12 use both JNDI and the Java API for XML (JAXP). The
JNDI examples that read DSML files require the DSML provider for JNDI. This pro-
vider is a preview technology on java.sun.com at the time of publication. The JAXP
reference implementation from Sun is included with Java 1.4 and available for earlier
Java releases from Sun’s Java site at http://java.sun.com/.
GETTING STARTED xxi

about the cover illustration

The figure on the cover of LDAP Programming, Management and Integration is called
an “Aga de los Genizaros,” an officer in the Turkish infantry. The illustration is taken
from a Spanish compendium of regional dress customs first published in Madrid
in 1799. The title page of the Spanish volume states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo des-
ubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y en
special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:
General Collection of Costumes currently used in the Nations of the Known World,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful espe-
cially for those who hold themselves to be universal travelers.

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing. It
is just one of many figures in this colorful collection. Their diversity speaks vividly of
the uniqueness and individuality of the world’s towns and regions just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other. The collection brings to
life a sense of isolation and distance of that period and of every other historic period
except our own hyperkinetic present. Dress codes have changed since then and the
diversity by region, so rich at the time, has faded away. It is now often hard to tell the
inhabitant of one continent from another. Perhaps, trying to view it optimistically, we
have traded a cultural and visual diversity for a more varied personal life. Or a more
varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two cen-
turies ago brought back to life by the pictures from this collection.
xxii

1
P A R T
Fundamental
LDAP concepts

The Lightweight Directory Access Protocol (LDAP) has emerged as the standard for
accessing directory services over networks. In this first part of the book, we will look
at everything you need to know about LDAP.

Chapter 1 begins with an exploration of the many uses and benefits of LDAP, as
well as its origin. From there we move on to an overview of current directory man-
agement and interoperability issues. At the end of chapter 1, we glance at the available
and emerging tools that allow for easier integration between different data sources.

Information is exchanged between LDAP clients and servers using containers called
entries. These containers are formed based on a particular information model that we
discuss in chapter 2.

Entries in a directory are given unique, hierarchical names in an LDAP directory.
In chapter 3, we look at how these names are formed, naming issues, and best practices.

Chapter 4 covers LDAP search criteria. The focus here is on simplifying the some-
times complicated combination of search filters, scopes, and bases that make up an
LDAP search request.

You will get your first look at Directory Services Markup Language (DSML), the
latest standard for representing directory information and operations in XML, in chap-
ter 5. Chapter 5 also formally introduces the LDAP Data Interchange Format (LDIF),
which is a commonly used format for sharing and storing directory information.

C H A P T E R 1

Introduction to LDAP

1.1 What LDAP is 4
1.2 What LDAP is not 7
1.3 Current applications 10
1.4 Brief history 15
1.5 LDAP revisions and other

standards 18

1.6 Directory management 23
1.7 Directory integration 24
1.8 Integration and federation via virtual

directory technology 30
1.9 Why this book? 31
1.10 Summary 32
In this chapter, we introduce the Lightweight Directory Access Protocol (LDAP) and
attempt to answer the following questions:

• What is LDAP? Who needs it? How is it used?

• What are directory services? Where do they fit in the grand scheme of things?
Which ones exist? What is their relation to LDAP?

• What are common issues in planning and deploying directory services?

• Where do metadirectories, provisioning tools, and virtual directories fit
with LDAP?

• What standards organizations and industry consortia are responsible for further
development of directory services and LDAP standards?
3

1.1 WHAT LDAP IS

LDAP is a standard that computers and networked devices can use to access common
information over a network. The ability to provide network access to data in itself
does not make LDAP stand out from dozens of other protocols defined for data
access, such as Hypertext Transfer Protocol (HTTP). As you will see in this chapter
and those following, a number of features and vendor efforts make LDAP very well-
suited for access and updates to many types of common information.

For example, information about employees might be stored in a directory so that
people and applications can locate their contact information. Such contact informa-
tion might include email addresses and fax numbers, or even additional data that
unambiguously identifies employees’ attempts to access enterprise applications.

1.1.1 Directory services and directory servers

A directory is simply a collection of information. For example, the telephone book is a
directory used by virtually everyone to find telephone numbers.

Directory services provide access to the information in a directory. A simple direc-
tory service that most people use from time to time is the directory assistance offered
by most telephone companies. By dialing a telephone number, anyone can receive
instant access to information in the telephone directory.

In the computer world, directories exist everywhere. The Unix password file can
be considered a directory of computer accounts. The Domain Name Service (DNS)
acts as a directory service providing information about network hosts.

Computer applications often have their own directories. The Apache web server
can store usernames and passwords in a data file, which is thus a directory of users.
Customer information stored in a database can also be considered directory informa-
tion if it is of a common nature with applications outside a single program or system.

Directory servers are applications that primarily act as directory services, providing
information from a directory to other applications or end users. This functionality is
most applicable in client/server environments, where the service may be located
remotely from the calling application or system. For example, on Unix or Linux com-
puters running the Network Information Service (NIS), the ypserv program can be
considered a directory server.

1.1.2 LDAP and directory services

LDAP provides client-server access to directories over a computer network and is
therefore a directory service. In addition to offering the ability to search and read
information, it defines a way to add, update, and delete information in a directory.

Two general types of directory server software implement the LDAP standards:

• Stand-alone LDAP servers

• LDAP gateway servers
4 CHAPTER 1 INTRODUCTION TO LDAP

Stand-alone LDAP servers focus exclu-
sively on LDAP as their only access
mechanism; their proprietary internal
data stores are tuned for LDAP access.
These are typically what people mean
when they use the words LDAP server.

Instead of being tied to a local data
store, LDAP gateway servers translate
between LDAP and some other native
network protocol or application pro-
gram interface (API) to provide access to
directory information that is more
directly available via other means. One
example is the original use of LDAP: to
gateway to other directory services sup-
porting the X.500 standards. Another
more modern example of such an LDAP
gateway is a server that provides LDAP
access to information residing in Oracle
database tables.

Figure 1.1 illustrates the two types of services that can be used to provide LDAP-
enabled directory services.

The examples throughout this book will not address one type of server over the
other—the idea behind LDAP is that it shouldn’t matter where the end data is stored,
as long as the client and server can use LDAP to communicate that information in a
standard way understood by both sides.

In addition, we will focus primarily on accessing and managing information and
services through the LDAP protocol. Each directory server product is installed and
configured differently, usually in ways that are well-documented in product manuals.
It would be of little use to duplicate such information, because installation and con-
figuration of the software is relatively trivial.

1.1.3 Other directory services

LDAP is not alone in providing computerized directory services. It is also not the first
or even the most completely defined directory service.

Other directory services that have been popular in the past, and that are still in use
in many organizations, include those based on standards such as X.500, WHOIS,
NIS, PH/QI, and various proprietary directories from companies such as Novell, Ban-
yan, and others.

X.500 is a set of standards that originated in the late 1980s, with significant updates
as late as 2001. The standards are extensive and cover everything from access to rep-
lication. In many respects, X.500 is more mature as a protocol than LDAP, including
such technologies as multimaster replication and access control, but its relative

Local
Data

Data

Data

LDAP Directory

LDAP Gateway

LDAP-Enabled
Directory Service

Figure 1.1 LDAP directories and LDAP gate-

ways are different types of products that

provide LDAP-enabled directory services.
WHAT LDAP IS 5

complexity has made it less popular for access. However, it is still very popular, and
a number of vendors sell servers that support these standards. These vendors tend to
focus on X.500-based protocols for interoperability between servers, while exposing
the data using an LDAP gateway.

WHOIS was an early attempt at a simple protocol for Internet-accessible white
pages. The services supporting this protocol took a simple string and returned free-
form text in response. A WHOIS server could be written on most operating systems in
a short amount of time, but lack of standard data representation made it difficult to do
anything but display the results as they arrived. Unfortunately, this limitation makes
programmatic use of the resulting data in non–white pages applications very difficult.

NIS, originally called Yellow Pages (YP), was Sun’s remote procedure call (RPC)-
based operating system directory. Most Unix-based servers support some variant of
this protocol. With a relatively simple replication model and access protocol, as well
as the ability to discover servers on a local network, its creation was necessary due to
the growth in client-server computing where users might exist on a number of serv-
ers. However, it was not well-suited for wide area networks (WANs) offered little in
the way of security, and was not easily extensible for storing additional information
in existing maps.

PH/QI was very popular at about the time HTTP became widely used. It was a
multipurpose client-server directory service developed by Paul Pomes at the University
of Illinois at Urbana-Champaign (UIUC). It was especially popular at universities in
North America and was used to store not only white pages information, but also infor-
mation that could be used for security, such as logins and credentials. One of the ear-
liest applications to take advantage of the Common Gateway Interface (CGI) that
shipped with the original National Center for Supercomputing Applications (NCSA)
HTTP server was a gateway that presented an HTML interface to a PH server. Some
mail applications, such as Eudora, were also able to perform PH queries for address
books. LDAP’s acceptance in the industry curtailed any serious move to PH/QI; in
addition, the service was somewhat limited. The protocol was relatively simple and
text-based; it was easy to access programmatically but designed to run on a central
server, limiting its scalability and scope.

Banyan was an early leader in MS-DOS/Windows operating system directories,
but it didn’t fare well as Microsoft and Novell became more directory-aware. Banyan
eventually changed its name to ePresence and is currently one of the larger integrators
focused on directory services.

Novell based the proprietary directory service for its Netware Network Operating
System (NOS) on the X.500 standards. Netware’s directory has long been regarded
as one of the more solid operating system directories, and Novell has a long history
of directory integration in its products. As LDAP picked up steam, Novell separated
the NOS from the directory and created eDirectory; it is now a popular LDAP-
enabled directory service with the broadest platform support of any directory services
vendor’s product.
6 CHAPTER 1 INTRODUCTION TO LDAP

1.2 WHAT LDAP IS NOT

LDAP is an access protocol that shares data using a particular information model. The
data to which it provides access may reside in a database, in memory, or just about
anywhere else the LDAP server may access. It is important that the data be presented
to an LDAP client in a way that conforms to LDAP’s information model.

LDAP is being used for an increasing number of applications. Most of these appli-
cations are appropriate—but some aren’t. To get a better idea what LDAP should and
shouldn’t be used for, we begin this section with an overview of LDAP limitations that
make it a bad choice for certain types of applications.

LDAP is not:

• A general replacement for relational databases

• A file system for very large objects

• Optimal for very dynamic objects

• Useful without applications

1.2.1 LDAP is not a relational database

LDAP is not a relational database and does not provide protocol-level support for rela-
tional integrity, transactions, or other features found in an RDBMS. Applications that
require rollback when any one of multiple operations fails cannot be implemented
with the current version of LDAP, although some vendors implement such function-
ality when managing their underlying datafiles. LDAP breaks a number of database
normalization rules. For example, 1NR states that fields with repeating values must be
placed into separate tables; instead, LDAP supports multi-valued data fields.

Some LDAP server vendors proclaim that directories are somehow faster than rela-
tional databases. In some cases, this is true. In other cases, databases are both faster and
more scalable. Nothing inherent in the LDAP protocol makes it in any way faster than
other data access mechanisms, such as Open Database Connectivity (ODBC). Every-
thing depends on how the underlying data store is tuned.

LDAP lacks features found in relational databases even in cases where LDAP sits
on top of a relational data store, as is true with Oracle and IBM directory server prod-
ucts. The LDAP protocol currently has no standard for transmitting the type of infor-
mation necessary to take advantage of the powerful relational and transactional
capabilities present in the underlying data store.

1.2.2 LDAP is not a file system for very large objects

LDAP provides a hierarchical way of naming information that looks remarkably like
that found in most file systems. Many people see this aspect of LDAP as an indica-
tion that it might be a great way to centrally store files to make them accessible over
a network.
WHAT LDAP IS NOT 7

In fact, LDAP is not a great way to do network file sharing. Although it allows
information (including binary data) to be transmitted and stored, it does not have the
locking, seeking, and advanced features found in most modern file-sharing protocols.
Figure 1.2 shows some of the disadvantages of using LDAP in this manner.

The Network File System (NFS) and similar file-sharing protocols have this
advanced functionality and are well-tested and accepted for use on local intranets.
Web protocols such as the HTTP and File Transfer Protocol (FTP) are more appro-
priate when you’re providing Internet access to data on local file systems.

In a similar vein, LDAP is often only marginally useful to store serialized objects,
large structured documents (such as XML), and similar types of data in the directory.
Because the LDAP server may not know how to parse these blobs of data, it will not
be able to search on attributes within them.

For example, if you store XML documents in the directory, you will not be able
to search for all XML documents in the directory that implement a particular docu-
ment type unless you also store the document’s type in the directory. Such a process
involves duplicating information already stored in the XML document.

Without storing this metadata, the XML document is an opaque object that can
only be stored and retrieved in full. By contrast, a good file-based XML parser has the
ability to seek through parts of the XML document and retrieve or manipulate only
those sections that are pertinent to the current operation. This situation may be chang-
ing as LDAP vendors become increasingly XML savvy and begin supporting such
functionality as XPath searching.

Note that because the LDAP protocol is separate from the data to which it pro-
vides access, it is possible for a particular LDAP server to be extended to handle par-
ticular types of objects more intelligently. For example, the server might include an
XML parser that indexes XML documents for easier search and retrieval with LDAP.
We’ll explore this process briefly in the context of attribute syntax and matching rules
in chapter 2.

LDAPBig File

Entire Big File

LDAP LDAP Server

LDAP Client

LDAP Client
Figure 1.2

LDAP is not a network file system. Here you

see that if you stored a large file using

LDAP, clients would need to read the entire

file via LDAP rather than page through the

applicable sections. If either client died in

midtransfer, it would need to start again

from scratch.
8 CHAPTER 1 INTRODUCTION TO LDAP

1.2.3 LDAP is not optimal for very dynamic objects

Generally speaking, LDAP is not the place to store very dynamic information. For
example, there are a number of reasons it would be unwise to write extensive audit
logs to an LDAP entry each time a user accesses a system.

First, most LDAP servers optimize for search performance at considerable cost in
write performance. Updating a single attribute in some LDAP environments generally
takes a longer time than comparable updates to a well-designed database.

Second, even with high write performance, LDAP as a protocol does not have facil-
ities to ensure that a set of transactions will happen in the right order. This complicates
even the simplest updates to dynamic information involving multiple applications or
threads. Even a simple counter can get corrupted when two applications try to update
it simultaneously.

Finally, even if a particular server supports tuning for updates and adds proprietary
protocol extensions to support better locking that allows for better multiapplication
updates, using these special features may avoid a major benefit of LDAP. This benefit
is the ability of application developers to use LDAP without having to take note of the
server implementation being used.

1.2.4 LDAP is not useful without applications

LDAP lacks an SQL-like general reporting language of the kind found with most
general-purpose databases. Such reporting languages can often be used to generate
sophisticated reports from a database. Because directories are used for more generally
useful information, such as account information usable by many applications, this
lack of report generation support is insignificant.

Lack of generalized report generation makes it even more important that LDAP
directories be built around the notion that applications will be using them. In addi-
tion, it’s important that LDAP directory services be designed and deployed with full
cooperation from the application developers who will use the service.

Although it lacks a general report-generation language, LDAP offers a number of
powerful APIs. Many of these APIs are based on well-documented industry standards
whose wide acceptance has been one of the strongest drivers of early LDAP adoption.
Unlike databases, directories using LDAP have a wire protocol that can be used with-
out using special vendor drivers, making directories important for information that
can benefit many applications that otherwise have nothing in common.

Thanks to the ease with which these APIs can be used, a large number of applica-
tions now provide native support for LDAP where it makes sense. You can find some
of these LDAP-enabled applications, such as those providing shared address book or
white pages functionality, on the Internet and in nearly all modern email and web
browser software.
WHAT LDAP IS NOT 9

LDAP is now mature technology used by a wide variety of applications for many
critical purposes. These applications include everything from authentication, autho-
rization, and management of application and operating system users to routing of bil-
lions of email messages around the world. New applications are developed every day
that ensure that LDAP’s importance will continue to grow.

1.3 CURRENT APPLICATIONS

As we just discussed, successful directory services depend on application support. In
this section we begin to examine the types of applications that normally leverage
LDAP-enabled directories.

1.3.1 White pages

One of the first uses of enterprise directories was to provide electronic shared address
books, called white pages (see figure 1.3). LDAP has long been used to provide access
to information that enables white pages functionality. In fact, white pages applica-
tions are the most widely deployed and visible LDAP-enabled applications.

Both Netscape and Internet Explorer have built-in support for searching LDAP
directories and presenting the results in the form of an address book. Most email
applications released in the past few years provide this same functionality, although
some still support their own proprietary standards to remain compatible with legacy
workgroup-oriented directories. Figure 1.4 shows how such a client might talk to a
directory to retrieve this information.

A quick chat with most corporate intranet webmasters would reveal that the most
frequently accessed application on an intranet is usually a corporate contact database.
Everyone from the mailroom clerk to the CEO needs to be able to locate their peers;

Figure 1.3 This screen from the Outlook Express email client is an example of a

white pages application.
10 CHAPTER 1 INTRODUCTION TO LDAP

therefore, it is the simplest application available to demonstrate the power and sim-
plicity provided by directory access.

Web-based white pages applications are useful for extending LDAP information to
points beyond an intranet environment when firewalls or a lack of installed clients pre-
vent pure LDAP communication. Figure 1.5 shows how a web server might act as a
gateway for white pages requests from an end-user’s web browser.

Most people already have an LDAP-enabled browser or email client, or can access
white pages via a web interface. This simplifies deployment and allows for more wide-
spread access.

In fact, creating an application that can search for information in LDAP is not par-
ticularly difficult. The following is a full code listing in Java using the Java Naming
and Directory Interface (JNDIJ) for a program that can search for information in an
LDAP-enabled directory service:

import javax.naming.directory.*;
import javax.naming.*;
import java.util.Vector;
import java.util.Enumeration;
import java.util.Properties;

public class SearchLDAP {

 public static void main(String[] args) {
 String base = "";
 String filter = "(objectclass=*)";

Address Book
Client LDAP Server

LDAP

Data

Figure 1.4 An address book client talks directly to an LDAP server.

Data

LDAP Server
Web Server

Browser

HTTP LDAP

Figure 1.5 The same directory shown in figure 1.4, with a web application rather than the

end-user’s client communicating via LDAP
CURRENT APPLICATIONS 11

 Properties env = new Properties();
 env.put(DirContext.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put(DirContext.PROVIDER_URL,"ldap://localhost:389");

 try {
 DirContext dc = new InitialDirContext(env);

 SearchControls sc = new SearchControls();

 sc.setSearchScope(SearchControls.OBJECT_SCOPE);

 NamingEnumeration ne = null;
 ne = dc.search(base, filter, sc);

 while (ne.hasMore()) {
 SearchResult sr = (SearchResult) ne.next();
 System.out.println(sr.toString()+"\n");
 dc.close();
 }

 } catch (NamingException nex) {
 System.err.println("Error: " + nex.getMessage());
 }
 }
}

The results of this code are not pretty, but they show how easy it is to tie LDAP into
a new or existing application for white pages or other lookup functionality.

Another benefit of using a web-based white pages application is that whereas most
browsers and email clients enable LDAP searches, a web-based application can offer
a point of self-administration for contact information. Information such as phone
numbers and mailing addresses can be managed using a simple interface that is inte-
grated with the search tools. This approach makes it easy for someone to change his
or her information quickly when necessary.

1.3.2 Authentication and authorization

It is virtually impossible to discuss user access and system security today without
LDAP being part of the conversation. Although it isn’t as visible to the casual user,
LDAP is emerging as the de facto way to access the identity information and creden-
tials needed to support authentication. Authentication is the process of validating the
identity of a user (or any other object, such as an application).

This process allows identity information to be managed and distributed much
more easily than via traditional means. Information stored in an LDAP-enabled data
store can be segmented for simpler management while presenting a unified view to
applications and authentication services.

Using LDAP also has the benefit of reusing identity information. This approach
offers a significant advantage over authentication processes that use an operating
system or proprietary mechanism. For example, using LDAP allows both Unix- and
12 CHAPTER 1 INTRODUCTION TO LDAP

Windows-based servers running a particular application to authenticate users in the
same manner and from the same repository. In effect, application development time
is reduced, authentication code is relatively static between platforms, and the admin-
istrative cost of managing two identity repositories is removed. Figure 1.6 shows how
an application might use LDAP to authenticate a user.

After authenticating, it is possible to use other available information about the
authenticated user (such as department, company, age, and so on) to determine
whether he or she is authorized to perform a particular action on resources within a
particular computing environment or application.

We will cover the use of LDAP as an authentication and authorization resource in
chapter 13. This discussion will include more sophisticated authentication mecha-
nisms, single sign-on issues, and many other related security concerns.

1.3.3 Personalization

Once a person has been identified through authentication, it is useful to personalize
the user’s experience based on their identity and preferences. In some cases, personal-
ization may simply mean placing the current user’s name at the top of a web page. A
more sophisticated use might be to pull the customer’s location information from the
directory to prepopulate an order form.

In a complex web environment with a variety of features, LDAP-enabled directo-
ries are a useful place to store information about users’ preferences. For example, you
might allow users to choose a particular product line as their primary interest when a
site covers a large number of products.

Capturing this information and enabling access to it via LDAP allows a variety
of applications to customize users’ experiences based on their interests. Doing so
offers an important benefit: personalized content can be consistent between multi-
ple applications.

H
T

T
P

Browser

LDAP (bind)

LDAP
Directory

LDAP-enabled
Web Server

Login as: Bob Smith
Password: abc123

SUCCESS!

Bob Smith

Figure 1.6

Bob Smith uses a browser

to access information on a

protected web server. The

web server first binds to

the LDAP directory to

authenticate him.
CURRENT APPLICATIONS 13

LDAP has been gaining wide acceptance as a place to store and retrieve personal-
ization information in enterprise applications. For example, most enterprise portals
support LDAP as a means of obtaining the information needed for personalization.

1.3.4 Roaming profiles

Closely related in many respects to personalization, but focused more on operational
preferences than content preferences, is the concept of roaming profiles. Roaming
profiles allow users to authenticate to an application on any machine and get an
identical environment. You do so by storing considerable individual configuration
options in a directory.

In addition to enabling roaming, directory-based security also offers the potential
to lock down certain configuration items or create organizational or group defaults.
In environments with less-sophisticated users, doing so makes it possible to update
user configurations without a system administrator needing to make a trip to each
cubicle or spend time on the phone walking a user through complicated steps within
an application.

Few stand-alone applications provide roaming profiles. Part of the reason is that
most applications vary widely in their configuration. Thus each application may
require additional information in the directory server to enable storage of that appli-
cation’s configuration values.

This requirement showcases a common conflict between application developers,
who often want to change schema to meet their applications’ needs, and system
administrators, who realize that changes in schema require a great deal of administra-
tive effort. The challenge is deciding where to draw the line between generally useful
information that belongs in a directory and application specific information that
belongs elsewhere. We will discuss this conflict further in chapter 2.

1.3.5 Public Key Infrastructure

Traditional authentication and encryption systems use secret keys. Generally speak-
ing, a secret key system requires both ends of a communication to know a secret pass-
word that will be used to hide the communication. The right secret password
produces a legible message, which both protects the message in transit and proves that
the message must have been written by the other party, because they were the only
other ones with knowledge of the secret. This approach works well as long as the
secret isn’t compromised and you communicate with few enough people that you can
remember a shared secret with each one.

Public key technology changes all this and makes the process more scalable. In this
system, two keys are produced. One key, called the private key, is still secret. However,
unlike the secret key in a shared-secret system, the private key is never shared with any-
one. Instead, a second key called the public key is distributed. A public key can be
placed in a digitally signed container called a digital certificate. Such certificates are
commonly used to distribute public keys.
14 CHAPTER 1 INTRODUCTION TO LDAP

A successful deployment of public key infrastructure is highly dependent on a well-
designed directory services infrastructure. An LDAP-enabled directory answers the
question of where to store and locate digital certificates. Centrally storing digital cer-
tificates in a directory allows people and applications to find certificates on demand
for business partners and peers with whom they need to communicate securely.

In addition to helping you locate certificates for encryption, directories let you find
a list of certificates that have been revoked prior to their expiration time. These cer-
tificate revocation lists (CRLs) are commonly stored in LDAP-enabled directories.

This book is not specifically about Public Key Infrastructure (PKI), but PKI is one
common application that uses directories. We discuss the use of directories with PKI
in much more detail in chapter 13.

1.3.6 Message delivery

On the Internet, messages are routed based on the fully qualified host name to the
right of the at sign (@). Such routing is typically done by using the DNS to identify
the IP address associated with the human-readable fully qualified host name.

Once a message has been routed to the correct machine, it is delivered on that
machine based on the username to the left of the @. Many mail systems now support
the use of LDAP to determine how to deliver a message.

The delivery process can include advanced operations, such as locating the exact
mail drop for the user in a cluster of mail servers. However, the most common usage
is for allowing full-name email aliases and implementing email lists.

As mentioned in section 1.3.3, directories can help you target mailings based on
information associated with identities. In an LDAP directory, users are often placed
together in groups, either as a list of users or as a dynamic specification (such as all
users in department A). These groups can be used for authorization, personalization,
and even mailing lists.

We discuss group schemas in chapter 2. Examples of managing groups appear in
chapter 7.

1.4 BRIEF HISTORY

The previous section makes it obvious that there are a wide variety of uses for LDAP-
enabled directory services. Many of these uses first came about with earlier stan-
dards—particularly X.500, which we mentioned briefly earlier in this chapter. In this
section we will take a quick look at how LDAP came to its latest incarnation.

1.4.1 X.500 and DAP

LDAP is a TCP/IP-based client/server directory access protocol originally based on a
subset of the X.500 Directory Access Protocol (DAP). X.500 is a comprehensive set
of standards from the ITU Telecommunication Standardization Sector (ITU-T) that
describes all aspects of a global directory service. X.500, like many standards, has
BRIEF HISTORY 15

gone through many revisions; work is still in progress to update it further. As shown
in figure 1.7, a client originally talked to an X.500 server using the DAP protocol.

Designed to be the standard directory service for the Open Systems Interconnec-
tion (OSI) world, X.500’s fortune has risen and fallen over the years, but it still has a
substantial following. Early on, X.500 was accepted by many large information tech-
nology (IT) organizations as the direction for global directory services. Although early
products had their problems, they also showed a great deal of promise. Many large
companies and universities implemented pilot projects, usually involving the hosting
of white pages.

One big issue arose very quickly with X.500: the fact that its access protocol required
an OSI protocol stack and complex binary encoding of structures represented in a
language called Abstract Syntax Notation One (ASN.1). Most desktop computers at
the time were ill equipped to deal with DAP.

As Internet Protocol (IP) became the dominant networking standard, DAP’s OSI
origins made it less attractive. Many of the organizations piloting X.500 directories
had already adopted IP and were looking for a protocol with less baggage for client
access. Even worse, X.500’s complexity and the lack of freely available standards doc-
uments or easy-to-use APIs made it difficult to develop clients without paying fees to
the ITU-T.

As we’ve stated since the beginning of this chapter, even the best directory is useless
when applications are not available to take advantage of it. Several white pages appli-
cations were available, but an electronic phone book is often not enough to justify the
expense of collecting and cleansing all the information necessary to make a directory
truly useful.

1.4.2 A new standard is born

In 1991, after a few false starts with other potential standards, LDAP was brought
forth as a lightweight means for accessing the DAP-enabled directories of the X.500
world. The first set of standards, LDAPv2, were eventually defined and accepted by
the Internet Engineering Task Force (IETF), an important standards body responsi-
ble for many important Internet standards, as RFCs 1777 and 1778.

These standards provided basic authentication, search, and compare operations, as
well as additional operations for changing the directory. From the start, LDAP made

X.500 Client DAP

X.500 DSA

X.500 DSADSP

Figure 1.7

The X.500 client uses

DAP to communi-

cate with the X.500

Directory System

Agent (DSA).
16 CHAPTER 1 INTRODUCTION TO LDAP

X.500 more accessible, as intended. Figure 1.8 shows an X.500 server being accessed
by an LDAP gateway service that is forwarding requests from an LDAP client.

Almost as important as the protocol itself was the release of a standard API and the
production of a client development kit. For the first time, it was possible to access
these servers programmatically without wandering knee-deep into an arcane protocol.

1.4.3 LDAP goes solo

As time went by, some people began to wonder what made X.500 so special in the
first place. The University of Michigan, which had developed the reference imple-
mentation of LDAP, released a stand-alone server called Slapd that would allow the
LDAP server to present data from a local data store rather than simply act as a gate-
way to an X.500 server.

Slapd was followed by a second service called Slurpd, which read the changes from
one server and replicated those changes via the LDAP protocol to other Slapd servers.
Figure 1.9 shows a typical stand-alone LDAP environment.

At this point, Netscape hired most of the original developers from the University of
Michigan Slapd server to develop the Netscape Directory Server. Netscape, which was
riding high with an incredible share of the Internet browser market, decided that net-
works would require directories and that LDAP, not X.500, should be the standard.
Nearly 40 other companies announced support at that time, bringing LDAP the focus
and support it needed to become the de facto standard for directory services.

LDAP Client LDAP Server
LDAP DAP

X.500 DAP

Figure 1.8 The X.500 client goes away, replaced by an LDAP client

talking to an LDAP server. Here, the LDAP server acts as a gateway

between LDAP-aware clients and DAP-aware X.500 DSAs.

LDAP Client LDAP

LDAP Server
(Slapd)

LDAP Replica
(Slapd)LDAP

LDAP

(Slurpd)

Figure 1.9 An LDAP client talks to a Slapd server. X.500 is no longer involved.
BRIEF HISTORY 17

1.4.4 LDAPv3

LDAP may have gained acceptance as a stand-alone service, but it was far from com-
plete. Due primarily to its reliance on X.500 servers to provide the server-to-server
communications, access control, and other functionality, LDAP was still only a skele-
ton of a full directory service by the mid-1990s.

Many interested parties pushed forward with the development of the next gener-
ation of the LDAP standards. In December 1996, the new version was published as
RFCs 2251 to 2256. These new specifications covered items including the protocol
itself, mandatory and optional schema, and LDAP URLs. A set of standard authenti-
cation mechanisms and a standard for session encryption were added to the list of core
specifications in 2000. Figure 1.10 shows the core specifications that make up the
LDAP standard.

1.5 LDAP REVISIONS AND OTHER STANDARDS

LDAPv3 was considered a great leap forward in several key areas, but it takes more
than a protocol to make a directory service successful. It is now up to several stan-
dards bodies and industry consortia to enhance the LDAP core specifications and
build a framework that allows directories from different vendors to interoperate, or at
least share some of the most crucial information in a standard way, and play a more
pivotal role in e-business. Figure 1.11 shows some of the many standards bodies and
industry consortia that shape directory standards and define best practices in deploy-
ment and management.

Protocol
(RFC 2251)

Mandatory Schema
(RFC 2252)

Distinguished Names
(RFC 2253)

LDAP URLs
(RFC 2254)

Search Filters
(RFC 2255)

User Schema
(RFC 2256)

Authentication Methods
(RFC 2829)

Transport Layer Security
(RFC 2830)

Digest Authentication
(RFC 2830)

Core LDAP Standards

Figure 1.10

The IETF has been the primary stan-

dards body for most of the existing

LDAPv3 specifications. This figure

shows a list of published RFCs that are

considered the core LDAP standards.
18 CHAPTER 1 INTRODUCTION TO LDAP

1.5.1 Replication and access control

Version 3 of the LDAP protocol was greatly improved from version 2, but lacked two
important items: replication and access control. The IETF has created workgroups to
deliver these missing pieces and others, as shown in figure 1.12.

Lack of a standard replication process has since become an interoperability nightmare
as each LDAP server vendor implemented its own proprietary solution. Many prod-
ucts use simple LDAP protocol operations to distribute data as shown in figure 1.13.
However, even those solutions using the LDAP protocol sometimes require propri-
etary controls or attributes.

Many parties recognized that replication was critical to obtaining scalability,
redundancy, and other important benefits. To resolve this issue, the Lightweight
Directory Update Protocol (LDUP) working group was created within the IETF. At
the time of this writing, the group has completed draft documents detailing require-
ments, a model for meeting those requirements, conflict resolution processes, and a
protocol specification. The use of replication is discussed further in chapter 6.

OASIS
Directory Services Markup

Language (DSML)

Distributed Management
Task Force (DMTF)

Common Information Model
(CIM)

Internet Engineering Task Force (IETF)
LDAP Standards

Network Applications
Consortium (NAC)

Users Group

Open Group
Directory Interoperability

Forum (DIF)
LDAP2000 Interoperability

Figure 1.11

Many industry consortia and

standards bodies are

involved with LDAP and

related standards, but most

have a narrow focus.

Access Control

Controls

APIs

Replication

LDUP WorkgroupLDAPExt Workgroup

LDAPv3 Protocol
Revisions

LDAPbis Workgroup
Figure 1.12

IETF workgroups are trying to fill

in the gaps left after the initial

publication of LDAPv3.
LDAP REVISIONS AND OTHER STANDARDS 19

In addition to the supplier-consumer model of replication available in most existing
directory servers, LDUP was chartered with allowing for multiple directory masters
for the same information, which is shown in figure 1.14. It also documents a process
for resolving conflicts that may arise when different and potentially conflicting
changes are made independently to the same entry on each master. In addition,
LDUP defines a protocol that can be used for both supplier-initiated and consumer-
initiated replication.

Security was further along in some respects. The Simple Authentication and Secu-
rity Layer (SASL), originally developed for the Internet Mail Access Protocol (IMAP),
was added as a core LDAP standard early on as a way to negotiate an appropriate type
of client and/or server authentication and even session encryption.

Developing a standard for access control has proven to be much more time con-
suming and has produced fewer results. As shown in figure 1.15, such a standard will
allow a server to determine if an authenticated entity should be able to read or update
a particular entry or an entire portion of the directory.

New Entry

Supplier
Directory

Consumer
Directory

LDAP
LDAP

Figure 1.13 Supplier-to-consumer replication exists in some products

using the LDAP protocol. Unfortunately, most need to use proprietary

attributes or controls to get around current limitations in the specifications.

New
Entry

Master
Directory

Read-Only
Replica

Master
Directory

Another
New Entry

LDUP
Multimaster Replication

LDAP

LDUP

LDAP

Figure 1.14 Multimaster replication will allow changes to the same directory

tree in multiple directories.
20 CHAPTER 1 INTRODUCTION TO LDAP

The task of creating such a standard fell into the hands of the LDAP extensions
(LDAPEXT) workgroup within the IETF. This workgroup was formed to handle any
extensions needed to the LDAPv3 standards outside of replication. As this book is
being written, most activities of the LDAPEXT workgroup have been moved to indi-
vidual submissions and will likely become an informational RFC rather than a full
standard. Some aspects of access control may be pursued as part of the interoperabil-
ity requirements for replication.

To understand why access control might be bundled with the replication work-
group, think about the fact that any replication of information outside a vendor’s
products will render that data insecure—other vendors will not know the access con-
trol rules of the source data. Any practical solution for replication is dependent on a
standard for access control. We will look at access control further in chapter 13 when
we discuss directory security in more detail.

1.5.2 Directory Enabled Networking

As computer networks evolve to support more variety and depth of services, the com-
plexity of network management increases accordingly. Most network devices, includ-
ing routers and switches, have traditionally been configured using command-line
shells. Although this configuration enables relatively consistent management of a sin-
gle device, it does nothing to simplify the coordination of configurations across large
numbers of devices. Such coordination is critical when you’re enabling guaranteed
quality of service and other offerings that span multiple devices.

Directory Enabled Networking (DEN) provides a way for devices to configure
themselves based on information in a directory. Originally an initiative from
Microsoft and Cisco, DEN is now part of the CIM defined by the DMTF.

CIM is a set of object-oriented, implementation-neutral schemas that represents
logical and physical attributes of hardware and software. The DMTF, rather than
being protocol architects like the IETF, focused primarily on creating common
object definitions that allow two CIM-aware applications to store and use informa-
tion consistently.

Contrary to popular belief, CIM and DEN are not LDAP-specific information
models, but are instead “meta” models that can be specialized for a number of

Bob Smith

LDAP-enabled
Application

LDAP
Directory

Can Bob Smith Add Entries to XYZ, Inc.? ACLs

YES

Figure 1.15 LDAP access control standards will include a mechanism for determining in

advance whether an operation will be permitted.
LDAP REVISIONS AND OTHER STANDARDS 21

environments, of which LDAP is one. XML is an example of another way that CIM
objects can be represented.

Momentum behind DEN as the killer application that would drive directories has
died down to an extent over the last few years, and most of the work around directories
has moved to identity management solutions. In this book, we will not focus on DEN
as a specific application due to the current lack of software and hardware that can truly
exploit this technology.

1.5.3 XML and directories

The eXtensible Markup Language (XML) is an industry standard language used to
define structured documents. It offers a set of common tags for defining data about
data, or metadata. This metadata can be used to describe particular document types.
Instances of documents implementing these types can then be shared and used by
XML-aware applications.

DSML is an XML document type that can be used to create structured documents
representing information in a directory service. This information represented in
DSML can include both directory entries and schema information. DSMLv2 extends
the specification to cover the representation of directory operations. Documents con-
forming to these standards can be exchanged using non-directory protocols like
HTTP, as shown in figure 1.16. Many new services that support DSML are becoming
available from both large vendors (Sun and Microsoft) and startups.

DSML is most useful in applications that are already XML enabled. These include
most modern application servers. DSML is especially useful in cases where direct
access to the directory would normally not be permitted. For example, consider a sit-
uation in which a firewall is blocking all traffic except HTTP. To get around this lim-
itation, a DSML encoding of a directory entry can be transmitted over the HTTP
protocol for interpretation and presentation. Such a situation is shown in figure 1.17.

DSML File

LDAP Entry

DSML-Enabled
Application

DSML
Service

LDAP Server
HTTP/FTP/
SMTP/etc.

LDAP

Figure 1.16 Here a DSML-enabled application talks to a DSML service that acts

as an intermediary between an LDAP server and the DSML-enabled application.
22 CHAPTER 1 INTRODUCTION TO LDAP

Emerging standards like Simple Object Access Protocol (SOAP) make it clear that
LDAP will not be the only standard for sharing directory information in the future.

1.6 DIRECTORY MANAGEMENT

Despite the importance of having well-defined standards, it is rarely the reason for a
directory services–related project to fail. Rather, the biggest headache with most new
directory deployments is proper management of information in the directory. In the
days when enterprise directories were used primarily for storing white pages informa-
tion, it was often adequate to simply import information into the directory periodi-
cally from other, more authoritative data sources. Due to the lack of sophisticated
management tools, there wasn’t much choice.

Today, directory management tools for users and groups are much more sophisti-
cated. In addition to giving a central administrator the ability to change information
about objects in a directory, these tools typically allow for delegation of administrative
duties and even user self-management, where appropriate.

This ability to distribute administration works well in intranet and Internet envi-
ronments, but it is especially critical in extranet environments where multiple organi-
zations are working together, potentially using the same applications and data. In such
environments, the segmentation of administration and access is very important (see
figure 1.18).

For example, a car manufacturer with just-in-time manufacturing facilities needs
to give its business partners access to certain systems in its extranet. Access to appli-
cations on the extranet is controlled based on identities in each of its distributors and
component suppliers. Tracking by identity offers audit trails, which will deter a ran-
dom individual from anonymously ordering unauthorized parts.

The problem is, in addition to the employees at the company, such an extranet
environment including suppliers and distributors may include hundreds of thousands,

DSML File

LDAP Entry

DSML-Enabled
Application

DSML
Service

LDAP Server
HTTP/FTP/
SMTP/etc.

LDAP

Firewall

Figure 1.17 DSML is useful for sharing directory information across fire-

walls that might limit direct access to directories.
DIRECTORY MANAGEMENT 23

if not millions, of users. Trying to manage all these users centrally would be an incred-
ible effort.

By segmenting users by company and other means, you can push administration
of identities to primary contacts within each of the business partners, thereby reducing
administrative overhead. Aside from reducing administration costs, this approach also
ensures better accuracy by pushing identity management closer to the identities being
managed.

Information that is not related to identities and groups can still be difficult to man-
age with off-the-shelf products. This is the case primarily because little attention has
been paid to other advanced uses of directories, such as DEN, which require manage-
ment of more exotic information.

In chapter 7, we will look at managing all types of directory entries, complete
with example applications to reduce manual data entry and allow some degree of user
self-management.

1.7 DIRECTORY INTEGRATION

Many organizations spend months designing the schema, entry naming, and other
related aspects of an enterprise directory service without considering the need for
integration with existing information repositories. What usually results is a

Manufacturer

Distributor

Supplier

Directory with Delegated
Administration

Manufacturer
Employees

Supplier
Employees

Distributor
Employees

Figure 1.18 Directories can be segmented such that administration

can be delegated to business partners. Such separation may be logical

rather than physical.
24 CHAPTER 1 INTRODUCTION TO LDAP

well-designed, standards-based directory service that contains stale information and is
nearly useless.

Meanwhile, legacy data stores that contain mission-critical information continue
to thrive because they contain fresh information, although in a way that is often incon-
venient to access from new applications and nearly impossible to access from off-the-
shelf applications without substantial custom development. Figure 1.19 shows how
this typical scenario plays out.

By designing and implementing an appropriate level of directory integration between
legacy data stores and the new directory service, you can dramatically increase the
value of the new directory (see figure 1.20).

Directory integration is far more complicated than simply synchronizing everything
from a legacy data store into a newly created directory. It demands that you evaluate
the needs of applications that depend on both new and legacy data stores. In many
cases, both new and legacy applications that utilize the respective data stores. Very
often, these applications need access to some set of the same information.

Spoiled
Data

Important
Business

Data

Well Designed,
Standards-Based
Directory Service

Awful, Proprietary,
Legacy Directory

User

No Value! Useful!

Figure 1.19 Data in legacy systems is nearly always more useful than data in poorly

integrated new systems.

Important
Business

Data

Well Designed,
Standards-Based
Directory Service

Awful, Proprietary,
Legacy Directory

User

Okay!Important
Business

Data

Directory Integration

Figure 1.20 Some level of directory integration is important in increasing the value of

applications using new directory services.
DIRECTORY INTEGRATION 25

Without any directory integration, it is often difficult to get more than a small
group of pioneers to quickly adopt the new applications. A new application may have
substantially better functionality, but without the proper data it will be difficult to
move the masses that use the legacy applications to the new environment. This issue
is demonstrated in figure 1.21.

By using integration techniques, such as synchronization, you can create a high
degree of interoperability between the two environments. This approach, shown in
figure 1.22, provides the necessary data flow between the two directories, offering a
relatively easy migration path to the new environment. It also ensures that the infor-
mation in both environments is consistent.

Consolidating these two environments can vastly simplify management. For example,
you may find a way for a Unix-based system to use the same directory as your white
pages application to store password information.

However, not every connected data store is a candidate for consolidation. Take,
for example, a human resources application that relies on a set of database tables to
store information. It may not make sense from an application functionality perspec-
tive for that particular application’s data store to be consolidated into an enterprise
directory. Some of the information may fit better in relational databases for the rea-
sons we stated in section 1.2.1, whereas other information may not be a good

New
Application

Legacy
Application

Standard
Directory

Legacy,
Proprietary
Directory

The MassesPioneers

Figure 1.21 It is difficult to move the masses to new applications based around a standards-

based directory when important information still resides only in a legacy directory.

Figure 1.22 Synchronization is often necessary to offer a migration path from legacy to

new applications or interoperability where legacy applications will not be migrated.

New
Application

Legacy
Application

Standard
Directory

Legacy,
Proprietary
Directory

The MassesPioneers

Bi-Directional
Directory Integration

Interoperability!

Migration Path!
26 CHAPTER 1 INTRODUCTION TO LDAP

candidate for synchronization because of privacy concerns. So, instead of attempting
to directly replicate everything from human resources into the directory, you need a
form of intelligent synchronization.

In the area of identity management, directory integration almost always seems like
a great idea in theory. For example, the management of users’ computer accounts in
a particular organization from hire to fire demonstrates the value of synchronization
and other advanced integration technology.

Today, it is often necessary to touch multiple data repositories to commit a single
change uniformly to all the places that store information about a person. These
changes are usually performed by different application and system administrators. In
more mature environments, changes may be synchronized with scripts to facilitate this
process. When administrators do not coordinate their changes, or if an automated syn-
chronization script fails, the data repositories are no longer synchronized, and at least
one of the repositories will contain stale data.

If this stale data is simply a telephone number, the impact is probably minimal.
However, if an account must be deleted or suspended due to an employee’s termina-
tion, the data repository with stale data is at risk from the terminated employee. If the
stale data resides in an enterprise directory that is used for authenticating and autho-
rizing users to all non-legacy systems and applications, this one failed change can
potentially put the organization’s entire intranet at risk. Proper directory integration
is key to reducing these types of risks. For this reason, it is important to spend an ade-
quate amount of time planning for integration.

A general integration planning process entails identifying which data elements exist
in each existing data source, selecting those that should be shared, and mapping
between the source and destination schema (see figure 1.23).

This process and ways of implementing it are described in detail in chapter 7.

1.7.1 Integration via metadirectories

We cannot emphasize enough that the consolidation of all data repositories into a sin-
gle enterprise directory within even the smallest of organizations is not likely to hap-
pen in our lifetimes. Even if it were possible to rewrite every legacy application to use
a single standard, different directory and database software is better for different
tasks. As shown in figure 1.24, this leads to many different environments within an
organization that have different variations of the same user.

In the past few years, a new breed of applications called metadirectories has come
to market to remove some of the burden associated with directory integration.
Although it may sound like yet another directory, a metadirectory is really a sophis-
ticated directory integration toolkit.

You can use metadirectories to connect and join information between data sources,
including directories, databases, and files. The connection process usually involves
identifying changes in each data source. Such a connection may be real-time moni-
toring of changes using a direct access method into the connected data store, an occa-
DIRECTORY INTEGRATION 27

sional scan of a file-based list of changes, or a review of a full export from the connected
data store.

The join process is much more complicated and usually involves several steps. Its
most important job is determining that an object in one data source is the same as an
object in a second data source. This aggregation of information from multiple data
sources is one of the most important features of a metadirectory and the heart of the
join process. Other tasks performed by a metadirectory may include unification or
mapping of schema and object names, filtering unwanted information, and custom
processing and transformation of data. Figure 1.25 shows a relatively logical view of
how a metadirectory might work to provide a linkage between key enterprise infor-
mation repositories.

With careful planning, you can create an environment in which users can be cre-
ated at a single point. Then, the metadirectory service will instantiate a subset of the

Sam Jones

sjones

sam.jones

sam jones

Oracle
Database

White Pages
Directory

HR
Database

Normalized
View

Integration

Password Department

ManagerTelephone

Email

Attributes

3

1
2

4
5

3 4
2

5

1

1

5

4

3

2

Figure 1.23 Multiple data repositories typically store information about a person.

Deciding which attributes come from where and mapping them to a normalized

schema is an important part of any directory integration process. Note that the

word normalized here should not be confused with database normalization rules.
28 CHAPTER 1 INTRODUCTION TO LDAP

users’ information in other connected data stores automatically, or with very little
manual intervention. The actual point of instantiation may be managed by another
type of software that handles the workflow needed by this process. Such software is
called provisioning software.

For example, if PeopleSoft, white pages, and an Oracle database all use a tele-
phone number, you would like that telephone number to be entered once and propa-
gated to the other data stores. Metadirectories must also handle environments where

Database Database

Oracle
Database

Intranet
Application

HR Application

Unix
Applications

Unix Passwords White Pages
LDAP Directory

Workgroup
Application

ERP Application

White Pages
Application

SQL
Server

Database

sjones sam jones

sam jones samjones

sjones sam jones

Figure 1.24 Different applications have different data repository requirements. It

is not likely that a single data store could accommodate all of them.

Database Database

Oracle
Database

Intranet
Application

HR Application

Unix
Applications

Unix Passwords

Meta
Directory

White Pages
LDAP Directory

Workgroup
Application

ERP Application

White Pages
Application

SQL
Server

Database

Figure 1.25 Metadirectories provide advanced integration capabilities

between different types of data stores.
DIRECTORY INTEGRATION 29

both Oracle and PeopleSoft would be able to master new changes depending on busi-
ness rules.

Metadirectories are also proving to be popular in extranet environments where two
or more organizations have their own directories and want to share a portion of them
with business partners or vendors. Figure 1.26 shows an extranet environment where
the addition of Joe Distributor might be propagated to the manufacturer using meta-
directory technology.

It is beyond the scope of this book to offer an in-depth look at metadirectory prod-
ucts. However, directory integration is critical, and some of the functionality pro-
vided by metadirectory products can be performed with a general scripting language.
We discuss such techniques in detail in chapter 6.

1.8 INTEGRATION AND FEDERATION VIA VIRTUAL
DIRECTORY TECHNOLOGY

Usually, metadirectories involve the creation of a new, physical directory, the contents
of which are based on an aggregation of multiple information sources. One emerging
alternative to metadirectory technology is virtual directory technology, sometimes
called directory federation technology. This technology attempts to provide real-time
directory access to other types of data stores, such as relational databases and mem-
ory-based application components. To visualize this process a bit more easily, think of
the virtual directory as a kind of proxy server: the application speaks LDAP to the vir-
tual directory software, and the virtual directory software grabs the data directly from
the legacy data store by speaking its native tongue. Figure 1.27 shows a directory-
enabled application accessing a virtual directory service that is providing data from
existing directories, databases, and application components.

Virtual directory technology is not as easy as it may sound. Each underlying data
store has its own query language and information model. The virtual directory must
find ways to optimize queries and map between LDAP and non-directory informa-
tion models.

Manufacturer
Directory

Distributor
Directory

Meta-Directory

Joe
Distributor

Figure 1.26

A user is entered into the

distributor directory. The

metadirectory detects a

change and propagates it

to an appropriate loca-

tion within the manufac-

turer directory.
30 CHAPTER 1 INTRODUCTION TO LDAP

At this time, virtual directory technology is in its infancy, as metadirectories were a
few years ago. However, it is emerging as another useful tool for providing a unified
view of information to LDAP-enabled applications. It is the only way to view infor-
mation in many kinds of existing repositories using directory protocols in real time.

1.9 WHY THIS BOOK?

People who have worked with directories know that installing and configuring most
directory server software is generally the easiest part of a directory deployment. Writ-
ing simple applications to query the directory and use the results is also quite easy,
once you understand the basics. Trouble begins to brew when it becomes necessary to
keep the information in the directory up to date through both front-end data man-
agement and back-end integration with other data sources. This book focuses on
making your directory deployments more successful through advanced application
and interdirectory integration.

Consider that every element of data stored in a directory must be placed into the
directory at some point. You can leverage the data that already exists in other reposi-
tories, someone can enter it into the directory through an administrative interface, or
the data can be generated by an application. In many environments, all these tasks may
need to happen to create a suitable directory service. Figure 1.28 shows some of these
different techniques for moving information into the directory.

For new and experienced directory service managers charged with deploying or
managing a directory service, these management and integration issues are clearly the
biggest challenge. Not having the right information, or having stale versions data,
dilutes the value of the directory to all applications that leverage it.

LDAP-Enabled
Application

Directory
Services

Application
Components

LDAP Virtual Directory/
Directory Broker

Figure 1.27 Virtual directories (sometimes called directory federators)

accept directory requests and transform them into requests for potentially

non-directory information.
WHY THIS BOOK? 31

Directory management involves
having the right tools and tying in
the right information from other,
often authoritative, sources of data.
In this book, we’ll focus on practical
solutions to common directory man-
agement problems. We will look at
Perl code for administration inter-
faces, directory synchronization, and
directory migration. The entire sec-
ond part of the book is devoted to
this topic.

Directory-enabled applications let
you use all the information you’ve
been collecting in directories. After all,
why collect data if it nobody wants to
use it? We’ll look at ways to leverage
LDAP in a variety of application envi-
ronments with source code in Java.
You’ll find that such application inte-
gration is key to having a useful and
important directory that people want
to keep current.

With the information in this book, you’ll have information flowing through your
directories with much less perspiration. Servers that support the LDAP standard can
provide a wide variety of functionality to a properly enabled application. This book
aims to help you manage your LDAP directories and enable your applications, both
new and existing, to support these directories.

1.10 SUMMARY

The LDAP standard for accessing directory services is important to software develop-
ers and system administrators. It can be used through LDAP-enabled applications
and various APIs.

A number of different directory services have come into existence in the past few
decades; LDAP was derived from another popular standard called X.500. These direc-
tory services provide everything from white pages to application security.

Management and application integration are the two biggest issues people tend to
encounter when deploying directory services. You can address these issues many ways,
as the second and third parts of this book explain.

The IETF has been the driving force behind the core LDAP specifications and
many enhancements. Its most important current work is related to replication and

Existing
Data

Directory Service

Directory Service

Directory Service

Administration
Application

Data Generation
Application

Synchronization

Generation

Management

Management

Existing
Data

Figure 1.28 Data in directories is synchronized

with existing data stores, managed through

administration applications, and/or generated

in some way.
32 CHAPTER 1 INTRODUCTION TO LDAP

access control. Other industry consortia and standards bodies are important in devel-
oping LDAP server and application interoperability guidelines, as well as standards
that represent data from the LDAP information model in XML.

Metadirectories provide synchronized integration between multiple data reposito-
ries, and virtual directories provide real-time integration between applications and
existing data via directory protocols. Provisioning tools allow for manual management
of the information in directories. Each of these types of tools plays an important role
in a well-rounded directory service.

In the remainder of part 1, we will focus on the LDAP standards in more detail,
and discuss how to use LDAP tools to communicate with a directory server.
SUMMARY 33

C H A P T E R 2

Understanding the LDAP
information model

2.1 Information model overview 35
2.2 Working with LDAP schema 37
2.3 Attribute types 39
2.4 Object classes 46

2.5 Using object modeling to design
LDAP schema 51

2.6 Summary 54
In chapter 1, we took a general look at LDAP. In this chapter, we look in more depth
at the way LDAP represents information. LDAP’s information model is very impor-
tant because every piece of data exchanged between an LDAP client and server uses it.

Questions that will be answered in this chapter include:

• How is information stored in LDAP? What is an information model? Why is it
important, and how does it simplify application development?

• Where is LDAP’s information model defined?

• What is the LDAP schema? What makes up the schema?

• What is an entry? How do entries compare to rows in a database? How does the
schema affect entries?

• What are object classes? What are attribute types? How are object classes in
LDAP different from classes in a programming language? What is inheritance,
and how does it affect an object class’s definition?

• How are attributes different from fields in a database? How are attributes differ-
ent from variables in a programming language?
34

2.1 INFORMATION MODEL OVERVIEW

LDAP information is represented in a specific logical form. The model used is not
relational, nor is it completely object oriented. It is therefore important that we spend
some time discussing the information model that LDAP uses.

In a nutshell:

• Information in LDAP is logically represented as entries.

• Entries belong to one or more object classes.

• Each object class is defined by a set of attributes.

• An attribute consists of a type and one or more values.

• Object class and attribute type definitions make up the schema.

Having a standard information model means that a client does not need to worry
whether the server it is communicating with is providing data from state-of-the-art
fiber-channel-connected disk arrays or a ticker-tape machine connected to a spool of
toilet paper encoded with Braille dots. The server’s physical data access mechanism is
simply not important to the LDAP-enabled client.

Many vendors approach LDAP with the goal of making it their primary directory
protocol, rather than just an add-on that lets people access their proprietary data
stores. Other vendors tend to focus on LDAP as an available external interface while
using proprietary protocols to manage interactions within their own environments.
Thanks to the extensibility of LDAP’s standard information model, it is possible to do
things either way without substantially affecting the way applications need to behave.

2.1.1 Entries

When LDAP clients and servers share information, they use entries. Entries are basic
elements of an LDAP server. Searches return a set of matching entries, but modifica-
tions can affect only one entry at a time.

Entries can be created by any LDAP-enabled client, imported using tools in most
servers, and in some cases generated by an LDAP-enabled application based on exter-
nally available information or user input from non-LDAP data in other repositories.
At the moment, we will concern ourselves primarily with the structure of entries,
rather than their creation. An example entry with three attributes and a name might
look like:

dn: cn=Ethan Daniel,o=manning,c=us
objectClass: person
cn: Ethan Daniel
sn: Daniel

Figure 2.1 shows a logical view of the composition of an individual entry. Every entry
follows this simple pattern. In the previous entry, the first line is the distinguished
name, and the following lines show attributes.
INFORMATION MODEL OVERVIEW 35

2.1.2 Attributes

Entries are made up of smaller units of data called attributes. Like fields in a data-
base, these attributes contain key/value pairs that describe a particular entry. The
key portion of the attribute is called the attribute type, and the value or values are
called attribute values. Figure 2.2 shows a simple entry that demonstrates the struc-
ture just described.

In the figure, you see a list of attributes. The attribute type is the part before the
colon (:). A value follows each type. In one case, a key is associated with more than
one value.

The dn attribute in this example is really not an attribute at all. Rather, it is the
entry’s distinguished name. This name is unique across the directory and is a useful
way of referencing an individual entry. For now, think of the distinguished name as
the primary key for the entry.

Take note of the objectClass attribute. As we will discuss in section 2.4, this
is a special attribute that helps you determine which attributes must (or may) be stored
in a particular entry.

2.1.3 LDAP entries vs. database records

Although LDAP entries may seem similar to database records in that both contain a
set of type/value pairs, there are a number of critical differences. For example, infor-
mation cannot be joined from multiple entries. Such functionality is trivial with a
relational database using an SQL statement similar to the following:

select table1.description,table2.price
 from table1,table2 where name='abc'

This line in an RDBMS would return a row of data containing values from two
tables. LDAP offers nothing similar, so the task of combining information from mul-
tiple entries is left to software.

Distinguished Name

Attribute Value

Attribute

Attribute

Value

Value

Value
Figure 2.1

An LDAP entry containing

attribute types and values

 dn: cn=Clayton Donley, ou=Authors,dc=Manning,dc=Com
 objectclass: person
 cn: Clayton Donley
 sn: Donley Figure 2.2

Simple LDAP entry
36 CHAPTER 2 THE LDAP INFORMATION MODEL

Likewise, a single LDAP operation cannot affect multiple entries. Thus LDAP has
no equivalent to the following SQL statement, which updates all the rows in a partic-
ular table:

update table2 set price = price * .80

2.2 WORKING WITH LDAP SCHEMA

The schema supported by an LDAP server determines the types of information that
can be stored in a particular directory. A schema consists of attribute type and object
class definitions (see figure 2.3).

Most servers include some standard schemas, as we will describe in section 2.6. Virtu-
ally all servers support extending the schema to some extent; this functionality is
important, but it can create problems and incompatibilities.

2.2.1 Standard LDAP schema

You now know that LDAP entries are defined by a set of attributes. We have also
noted that the attribute types an entry contains are dependent on the object classes to
which the entry belongs. The definition of object classes and attribute types make up
an LDAP directory server’s schema.

Before you begin to create schema, it is important that we discuss the standard
schema. Everyone has his or her own idea about how an attribute type should be
named and which attribute types should be included in a particular object class. Hav-
ing schema standards ensures that although not everyone gets to use a favorite attribute
type and object class names and definitions, we are all using the same names when we
talk about common things. Using these standards, in turn, ensures that applications
not only will work with your directory, but also will work with any other directory that
supports the same standard schema. This doesn’t mean you will never need to create

Schema

Attribute
Type

Attribute
Type

Attribute
Type

Attribute
Type

Object
Class

Object
Class

Figure 2.3 The LDAP schema comprises object class and attribute type definitions.
WORKING WITH LDAP SCHEMA 37

your own object classes and attributes; it simply means that you delay your explosion
of new and exciting schemas until you have first evaluated the standards for a more
workable, shareable solution.

Where are these standard object classes and attribute types defined? The short
answer: everywhere. The long answer is explained in the following subsections.

Internet Engineering Task Force

The IETF is responsible for releasing the core LDAP specifications:

• RFC 2252 defines the operational schema that every LDAP server must support.

• RFC 2256 defines a number of standard object classes for people, groups, orga-
nizations, and related entities that virtually every LDAP-enabled server supports.

Among the object classes defined by the latter, the most widely used are:

• person

• organizationalPerson

• organization

These classes are a few of the most recognized structures for representing people and
organizations on the Internet. These and others defined by the IETF are derived from
object classes defined for the X.500 directory service.

Many more standard object classes are defined. In addition to the ones in
RFC 2256, many vendors support an object class called inetOrgPerson, which was
initially developed by Netscape and published as an Internet Draft on multiple occa-
sions. Although it isn’t an Internet standard, inetOrgPerson is an industry stan-
dard that is implemented by many modern LDAP servers.

NOTE Microsoft Active Directory is one of the few directory servers that does not
support the inetOrgPerson standard out of the box. It can be config-
ured to support it. By default, Active Directory does support organiza-
tionalPerson and other schema defined in RFC 2256.

In addition to the schemas defined in the core LDAP standards, schemas exist in other
RFC documents. Some of the older schemas are based on X.500 standards, whereas
new schemas exist in areas such as policy management. Workgroups within the IETF
that are not focused on directories, especially the policy-related workgroups, are also
putting out new directory schemas.

Distributed Management Task Force

As we mentioned briefly in chapter 1, the DMTF has defined a number of object mod-
els that represent a wide variety of object types. These object models include those
previously defined as part of the DEN initiative founded by Microsoft and Cisco.
38 CHAPTER 2 THE LDAP INFORMATION MODEL

Many of the models produced by the DMTF have since been translated into stan-
dard LDAP schema and published as Internet Drafts. They can be found online at
http://www.dmtf.org.

2.3 ATTRIBUTE TYPES

Attribute types are the building blocks of LDAP entries. This section provides a foun-
dation for understanding the composition and definition of attribute types.

2.3.1 Defining attribute types

Attribute type definitions include the following components:

• Name

• Object IDentifiers (OIDs)

• Syntax

• Matching rules

• Inheritance

Attribute type names

Attribute type names in LDAP are case-insensi-
tive strings containing only letters, numbers,
dashes (-), and semicolons (;):

By case insensitive, we mean that for direc-
tory servers and clients, Name is the same as
NAME or nAmE. Semicolons have a special use
that we will discuss later; for now, keep in mind
that they’re not used arbitrarily.
The standard practice for writing the name of attribute types is to use lowercase char-
acters. If the attribute type name consists of more than one word, those additional
words are started with an initial capital letter.

Here are some example attribute type names that demonstrate this pattern.

• displayName

• telephoneNumber

• facsimileTelephoneNumber

• mobile

Attribute type Object IDentifiers

In addition to having a name, an attribute type is also associated with an OID. This
OID is a dot-separated number that is always unique.

Character Example

Letters givenName

Numbers x509Certificate

Dash (-) test-attribute

Semicolon (;) x509Certificate;binary
ATTRIBUTE TYPES 39

Languages may have completely different names for a particular attribute type. By
associating an attribute type name with a unique OID, you can easily map an
attribute type name in one language to the corresponding type name in a native lan-
guage (see figure 2.4).

Top-level OIDs are assigned in the United States by the American National Stan-
dards Institute (ANSI). Your organization may already be assigned a top-level OID. If
not, you can register for a number at http://www.ansi.org.

2.3.2 Syntax definitions

If the LDAP protocol transmits all information as 8-bit strings, how are integers and
other nonstring syntaxes handled? The fact that data is being transmitted or encoded
in a standard way has little to do with how applications should use that data or even
the nature of the data itself. Instead, the syntax of the attribute type tells you how you
should handle data.

For example, the attribute type uid is defined as a string. Thus you shouldn’t try
to put the value of uid into an integer in your favorite programming language and
expect to perform arithmetic operations.

Many different syntaxes exist in LDAP. The most basic syntaxes are those that sim-
ply contain generic strings or binary blobs. For example:

• Directory String—A syntax used for printable Unicode strings encoded in UTF-8
that are generally case insensitive

• Binary—A syntax used for nonprintable binary data

Other syntaxes can be used to identify attribute values that are either complex or gen-
erally associated with special matching rules:

• Certificate—A complex, binary-encoded certificate

• Telephone Number—A simple string representing a telephone number, where
non-numeric content is usually ignored in a search

NOTE Because LDAP uses 8-bit strings for communication, it is possible for
attribute values to be sent to the server without the need for special encod-
ing, such as Base64.

OID:
2.5.4.41

mingZi name Figure 2.4

The OID 2.5.4.41 might be used by the

attribute types name and mingZi. A

search performed using 2.5.4.41 as

the attribute type will return matches

for either attribute type.
40 CHAPTER 2 THE LDAP INFORMATION MODEL

Like attribute types, syntax definitions have OIDs. These OIDs are normally used
when defining attribute types to prevent conflict and reduce the dependency on
English syntax names. Here are the OIDs for a few LDAP syntaxes:

• Binary—1.3.6.1.4.1.1466.115.121.1.5

• Certificate—1.3.6.1.4.1.1466.115.121.1.8

• Directory String—1.3.6.1.4.1.1466.115.121.1.15

Finally, an attribute type can define its syntax by specifying both a syntax and a size,
or bounds. For example, you can define a particular attribute as a string that is nor-
mally no larger than 10 characters. Some servers use this size as a hard limit, whereas
others do minimal or no bounds checking. It is therefore important that applications
check for possible overflows if they might cause problems.

Figure 2.5 shows three attribute types, each of which is associated with a different
syntax. An example of an attribute value for each type is shown in order to give you
an idea of the various types of information that can be represented within the direc-
tory. As mentioned previously, the binary-encoded information is actual binary data,
not a printable encoding of that information.

Unlike some directory servers that allow syntaxes to be added through plug-ins and
other mechanisms, Active Directory supports only those syntaxes that come out of
the box. This shouldn’t be a limitation under most circumstances.

2.3.3 Matching rules for attributes

Although figure 2.5 may make it seem as if the syntax of a type is responsible for
returning appropriate matches, it only indicates the syntax of the value stored in a
particular attribute type. In fact, this is only one factor. Attribute types have associ-
ated matching rules that indicate how they should handle searches.

Figure 2.5 The syntax of an attribute type affects how its associated

values should be used.
ATTRIBUTE TYPES 41

For example, the definition for a fictional employeeNumber attribute type may
state that the syntax of its values consists of integers and that when you compare these
values, you should use a matching rule called integerOrderingMatch. When
comparing values for this type, the value 1000 is larger than the number 101. The uid
attribute type specifies that the syntax of its values consists of directory strings and the
matching rule to use for ordering is caseIgnoreOrderingMatch; in this case, the
string “101” is larger than “1000” (see figure 2.6).

Matching rules are created to handle a number of possible assertions that may be
specified in an LDAP search. An LDAP client is not allowed to specify the rule it
would like the server to use in matching. Instead, the matching rule used is com-
pletely dependent on the attribute type’s definition on the server. You can use four
kinds of matching rules:

• Equality—Equality matching rules are used to determine equality between
values of this attribute and the value asserted by the query. For example,
caseIgnoreMatch will determine if a case ignore string (CIS) is exactly
equal to “Joe”.

• Greater or less than—Ordering matching rules are used to determine whether
one value is equal to or greater/less than another value. Figure 2.6 shows the use

LDAP
Server

LDAP
Client

Give me entries where "employeeNumber" is greater than 101

Entry w/ employeeNumber=1000 is returned

employeeNumber
integerOrderingMatch

LDAP
Server

LDAP
Client

Give me entries where "uid" is greater than 101

Entry w/ uid=1000 not returned

uid
caseIgnoreOrderingMatch

Figure 2.6 Different matching rules affect the way entries are matched in a search.
42 CHAPTER 2 THE LDAP INFORMATION MODEL

of ordering match rules to determine if 1000 is greater than 101 for different
attribute types.

• Substring—Sometimes you want to know if one value contains another. Sub-
string matching rules allow you to do this. For example, the caseIgnore-
SubstringsMatch matching rule determines if one string can be found
within another when you ignore case.

• Subschema—Subschema matching rules match particular information about the
schema supported by a directory. We will look at these rules further in chapter 7,
when we explore manipulating schema information directly on a server.

Like other aspects of LDAP, the matching rules available for use with LDAP attributes
can be extended by server vendors to provide matching of complex values. Support
for a new matching rule usually entails extending the server through plug-ins or
other means.

For example, if a small structured document is to be stored in an attribute, it may
be desirable to create a special matching rule that knows how to parse the document’s
header to provide functional searching. After all, if you knew what the entire docu-
ment looked like, you probably wouldn’t be searching for it.

2.3.4 Support for multiple values

Attribute types in LDAP may be associated with multiple values. Here is an example
of an entry with a multivalued attribute type called givenName:

objectClass: person
cn: Jonathon Johnson
sn: Johnson
givenName: Jonathon
givenName: Johny
givenName: John

This entry will be returned to a client that queries for any of the three values specified
for givenName.

A common misconception among people first getting started with LDAP centers
on support for multiple values. At first glance, multivalued attributes look like a great
way to store things like telephone numbers and addresses (nearly everyone has more
than one of each). However, this approach doesn’t quite work—attribute values are
returned unordered.

Because you can never count on value ordering to ensure that the first telephone
number is the primary number and the second number is a backup, dependence on
this ordering will send people to the wrong telephone number as often as the right one.
It is therefore necessary in such cases to define separate telephoneNumber and
homeTelephoneNumber attribute types; these types offer the context needed by
directory-enabled applications and end users, so they can determine which number to
use at which time.
ATTRIBUTE TYPES 43

Without ordering, what good are multiple attribute values? Having multiple values
does simplify the process of searching multiple values in instances where order is insig-
nificant. A good example of this involves groups. With most group implementations,
you simply want to list all the members in the group. The name of each group member
can easily be stored in an attribute within the group to indicate that the referenced
entry is a member of this group. When the group contains multiple members, the
member attribute contains multiple values (see figure 2.7). Multivalued attributes
work well in this case because you don’t care if someone is member number 1 or
1,000,000; you simply want to know if a particular user is listed as a member.

However, using this approach you can’t assume that the first person returned is the
group’s owner. Instead, you need to put the owner into a new attribute, perhaps asso-
ciated with an attribute type called owner (see figure 2.8).

In summary, you should use multivalued attributes only in cases where ordering does
not make a difference in how the value is used or displayed.

2.3.5 Inheritance

Many attribute types share common features. Rather than redefine these common
features each time you create a new type, you can create a generalized attribute type
with only the common elements. You can then create a specialized type that inherits
all the features of the generalized type.

For example, there are many different types of names: givenName, surName,
commonName, and so on. These types have many things in common: they are all case-
insensitive strings, and they all use the same matching rules. Knowing this, it is pos-
sible to create a generalized attribute type called name that has only the common fea-
tures we just mentioned. Figure 2.9 shows how this attribute might look.

LDAP attribute types can inherit part of their definition only from a single superior
type. Thus it would not be possible to inherit from the definitions of both the name
attribute type and a telephoneNumber attribute type.

cn: Cool Dudes
member: Joe
member: Mary
member: Steve

Figure 2.7

Pseudo-entry representing a

group. Here we have multiple

members and can easily find out

whether a given person is a

member of this group.

cn: Cool Dudes
member: Joe
member: Mary
member: Steve
owner: Joe

Figure 2.8

Here is our Cool Dudes group

again, but this time we’ve

included an additional attribute

to represent the group’s owner.
44 CHAPTER 2 THE LDAP INFORMATION MODEL

2.3.6 User modification

Some attribute types are not designed for update by directory applications. Such
attributes are often used by the server to manage internal information, while still
making that internal information accessible via the LDAP protocol.

For example, an LDAP server may track modification times on an entry by storing
a time stamp in an attribute. In such cases, it makes sense that only the server can
change this attribute. Therefore, the modifyTimestamp attribute is designated as
not permitting user modification.

2.3.7 Variables in Java, Perl, and C

At first glance, attributes look very similar to variables in most programming lan-
guages. Both store information, and both can usually specify a particular type or syn-
tax for the information being stored.

Beyond this surface similarity are some major differences. First, unlike most pro-
gramming languages, attributes can never point to other attributes in a way that is uni-
versally recognized. Attributes can reference another entry by containing an entry’s
name, but there is no way to say that one entry’s attribute is a pointer to the value of
a different entry such that when the “different” entry is changed, the value in the ref-
erencing entry reflects that change.

Additionally, LDAP attributes are meant for searching, so much of the information
in the attribute type definition defines more about how an entry is searched than how
it is stored. Even inheritance is more about determining the applicable matching rules
and syntax.

A major difference between variables in object-oriented languages like Java and
C++ and LDAP attributes is that a variable in these languages can be an instance of

All types have syntax and equality
matching rules from "name"

name
Syntax: CIS

Equality: CIM

surName
sup: name

commonName
sup: name

givenName
sup: name

Figure 2.9

The name type is the superior

type that contains the com-

mon syntax and equality

matching rules used by all

the naming attribute types.
ATTRIBUTE TYPES 45

a class, rather than a simple primitive data type. Variables that are instances of a
class often have both functionality (methods) and data. Even the data in these class
instances is often structured in a way that would be unworkable as attribute types
in LDAP.

This concept of structured data—or even simple hash-of-hash or hash-of-array
structures in Perl, which has poor support for real structured types—is missing in
LDAP. If an attribute has complex data, it is often simply represented as an unsearch-
able binary blob or broken out into separate attributes.

2.4 OBJECT CLASSES

Object classes in LDAP tell you which attributes are required and allowed to be in a
particular LDAP entry. LDAP entries are placed into an object class via the use of a
special attribute type called objectClass.

Let’s take another look at the objectClass attribute from one of our earlier
examples:

objectClass: organizationalPerson
objectClass: person
objectClass: top

The objectClass attribute simply gives you information about the type of entry
being stored in the directory.

This example tells you that the entry belongs to three object classes: top, person,
and organizationalPerson. In turn, knowing the object class of an entry helps
you figure out what kinds of attributes you will find in it.

2.4.1 Defining object classes

Like attribute types, object classes include the following components:

• Name

• OIDs

• Inheritance

In addition to those components, an object class includes information that defines
the allowable contents of entries that use that object class. Such information includes:

• Class type

• List of required attribute types

• List of allowed attribute types

Object class names

Object class names in LDAP are case-insensitive strings containing only letters, num-
bers, dashes (-), and semicolons (;). Traditionally, names have included only letters
and numbers.
46 CHAPTER 2 THE LDAP INFORMATION MODEL

OIDs

Like attribute types, object classes are associated with unique OIDs. These dotted
strings of numbers should be universally unique and have no particular meaning.
Also like the OIDs associated with attribute types, the OIDs assigned to object classes
should reside under a registered OID root.

2.4.2 Required and allowed attributes

The most critical aspect of an object class is the fact that it defines the contents of
entries. It does so by specifying the attributes that an entry must and may contain.

For example, the person object class mentioned previously is defined to require
the cn and sn attribute types. Entries of this class may also contain the userPass-
word, telephoneNumber, seeAlso, and description attribute types, but
these are not required.

2.4.3 Object class inheritance

You’ve seen already that an LDAP object class can specialize a superior object class.
This specialization is commonly referred to as inheritance. One object class inherits
the required and allowed fields from its superior object class.

As an example, let’s say you have a class called animal that you use to describe
animal entries in the directory. This is a great class until the day you decide to add cats.
Because you know that cats can have funky personalities, you figure that you should
track information about the cats’ personalities in their LDAP entries.

You have two options for accomplishing this. First, you can add a personality
attribute to the animal class. Doing so may not make sense if the other animals you
track are lacking in the personality department. Instead, you can create a new class
called cat. Rather than list all the attributes that are allowed and required for animal
entries in your new class, you simply inherit these specifications. Thus you might have
definitions that look something like those shown in figure 2.10.

+name
+age
+height
+length
+weight

animal

+personality

cat

name = Felix
age = 4
height = 10"
length = 15"
weight = 8lb
personality = frisky

Felix the Cat : cat

Figure 2.10

The cat class is a specialization of the animal class.

Felix is an instance of the cat object class.
OBJECT CLASSES 47

Now, when you create a new cat entry, you will be required to specify the cat’s
name and age just as if you were creating a new animal entry. However, you are
now allowed to add a personality attribute in addition to the attributes allowed
for animals.

The best thing about inheritance is that you can still use these new cat entries as
if they were animal entries in all your existing applications that know how to deal
with animals. After all, if you simply need to extract the name and age of the ani-
mal, you probably couldn’t care less whether that entry has an additional person-
ality attribute.

On the flip side of this equation, just because a cat is an animal doesn’t mean
that an animal is a cat. So, you shouldn’t be looking for animal entries if you
expect to receive attributes types and values that are specific to cat entries, such as
personality.

2.4.4 Multiple object class memberships

An LDAP object class can have only a single superior
object class, meaning that multiple inheritance is
unsupported. Interestingly enough, an entry can be
a member of multiple object classes, even if those
object classes are not related. For example, an entry
can be both a cat and a protectedObject.
Defined as such, the entry will have the required
and allowed attributes from the union of both
object class definitions.

If you define protectedObject to have an
attribute called public, an entry that implements
this class and the cat class might look something
like figure 2.11.

In this case, you might be using the public attribute for all your entries to decide
whether they should be displayed in a search. This behavior has nothing to do with
the fact that Felix is simply a cat.

2.4.5 Object class types

All object classes are not created equal. There are three different types of object classes:

• Abstract

• Structural

• Auxiliary

Abstract object classes

An object class that is defined to be abstract is never the primary object class for an
entry. Rather, it contains a list of required and allowed attribute types that are com-

objectclass: cat
objectclass: protectedObject
name: Felix
age: 4
height: 10"
length: 15"
weight: 8lb
personality: frisky
public: true

Figure 2.11 Pseudo-entry of a cat

that is also a protectedObject
48 CHAPTER 2 THE LDAP INFORMATION MODEL

mon to a variety of other object classes. An abstract object class can be used as the
superclass for other types of object classes.

The top object class is an example of an abstract object class. It is defined to
require the objectClass attribute. Every LDAP object class ultimately extends the
top object class; therefore, every entry must contain an objectClass attribute:

Structural object classes

Structural object classes are the bread and butter of LDAP. Every LDAP entry belongs
to exactly one structural object class.

An example of a structural object class is organizationalPerson. It extends
the person object class, which is also a structural object class. Thus an organiza-
tionalPerson is a person, but a person is not an organizationalPerson:

Auxiliary object classes

Auxiliary object classes are used for things that can add secondary data elements to an
entry. Our earlier example of the cat that is a protectedObject clearly demon-
strates this concept. You can have an auxiliary object class called protected-
Object that you can add to any type of entry to add values; however, adding this
class would not fundamentally change the purpose of those entries in such a way that
they no longer represent their structural class.

Additionally, it does not make sense to use an auxiliary object class without a struc-
tural object class. For example, protectedObject by itself is meaningless, because
the attributes it defines are useful only in adding value to the core entry defined by
its structural object class.

top object class

Description The root object class

Type Abstract

OID 2.5.6.0

Required objectClass

Allowed dITStructureRules, nameForms, ditContentRules, objectClasses,
attributeTypes, matchingRules, matchingRuleUse

Defined RFC 2256

organizationalPerson object class

Description A person belonging to an organization

Type Structural

Superior person

OID 2.5.6.7

Required sn, cn

Allowed userPassword, telephoneNumber, seeAlso, description

Defined RFC 2256
OBJECT CLASSES 49

The following definition of strongAuthenticationUser is an example of an
auxiliary object class:

You can form auxiliary object classes without adding required or allowed attributes.
Thus the object class can be associated with an entry such that the entry can be differ-
entiated from others solely on the basis of object class information

Active Directory binds auxiliary classes to structural classes at initialization. This
binding presents a number of limitations when compared to many other directories.
Most importantly, auxiliary classes cannot contain new required attributes. In addi-
tion, searches cannot be performed to return all the entries that implement an auxil-
iary class.

2.4.6 LDAP object classes and Java or C++ classes

There are significant differences between LDAP object classes and classes in object-
oriented programming languages like Java or C++. The most obvious difference is
that these languages have the concept of a class having both data and methods. The
methods are a means of performing actions within the language. These actions may
range from simply setting and getting information in an instance of that class to per-
forming complex business logic.

LDAP object classes have no such concept and are used only for data. Object class
definitions merely list the attribute types that can be stored in a particular entry. Even
inheritance in LDAP is a matter of inheriting the list of allowable attribute types,
rather than the more complex inheritance supported by object-oriented program-
ming languages.

Finally, LDAP is made for searching data, so concepts like public, protected, and
private data are not relevant. These concepts relate primarily to access between objects
or classes, but LDAP has no concept within the server of relationships between objects
or classes.

strongAuthenticationUser object class

Description A user that is associated with a digital certificate that can
be used for strong authentication

Type Auxiliary

Superior Top

OID 2.5.6.15

Required userCertificate

Allowed serialNumber, seeAlso, owner, ou, o, l, description

Defined RFC 2256
50 CHAPTER 2 THE LDAP INFORMATION MODEL

2.5 USING OBJECT MODELING
TO DESIGN LDAP SCHEMA

Object modeling is commonly used when designing classes and interrelationships
that will be implemented in object-oriented programming languages. It allows you to
ensure that the classes you create are reusable and extensible. For example, you might
begin by defining a class for people, but by using modeling, discover that you actually
have three different types of people with some common information and some spe-
cialized information between classes.

Because LDAP supports many object-oriented concepts, you can use some object
modeling techniques to design new directory object classes prior to their creation within
a particular server. This section uses Unified Modeling Language (UML) to present a
basic overview of object modeling as it pertains to modeling directory information.

2.5.1 Modeling classes

At its most basic level, a class in UML consists of a name, a list of attributes, and a list
of methods. UML attributes can have varying levels of visibility outside the class.
Because LDAP classes do not have methods and cannot have private attributes for uses

in those methods, you will model your classes with only
names and public attributes.

Each attribute is assigned a particular syntax, such as
String or Integer. Additionally, you can assign whether the
attribute will occur zero or more times (allowed) or one or
more times (required).

Figure 2.12 shows a simple class definition for a mon-
itor. In it, we have defined a number of attributes, includ-
ing size and brand.

2.5.2 Modeling relationships

Relationship modeling helps you understand how different classes relate to one
another in a way that can improve overall directory design. This section describes
basic relationship modeling in UML with an eye on its relevance to directory design.

Associations and aggregations

Relationships tend to be either weak or strong. In a weak relationship, the two classes
have few dependencies. An example might be Person and Computer. A person
might be assigned a computer, but removing a computer does not remove a person;
nor is the reverse true.

Associations are one type of relationship that classes may have with one another.
The diagram in figure 2.13 shows a Computer class and how it is related to other
classes, such as Printer, Monitor, and Keyboard. You could also show an asso-
ciation between the computer and a person who uses it.

size : String
supportedResolution : String
brand : String
model : String
connector : String
scanRate : Integer

Monitor

Figure 2.12 UML class

definition for a monitor
USING OBJECT MODELING TO DESIGN LDAP SCHEMA 51

Stronger relationships, sometimes called composition associations or aggregation, have
stronger dependencies. For example, a laptop is composed of an integrated keyboard
and display. Removing the laptop object should also remove its associated keyboard
and display. On the other hand, a basic computer has a weaker relationship with its
keyboard and monitor. Figure 2.14 shows an example of a composition association
that defines the components of a laptop.

Although associations and aggregations may be difficult to translate explicitly into
directory design elements, they can help determine placement of entries within the
directory tree or in final definition of object classes. For example, if printers are
always related to a single computer, it may make sense to place printers below com-
puters in the directory hierarchy or to add an attribute to computers that can point to
the printers associated with it.

Shown in the previous figures, but not explained, is the concept of multiplicity,
which is an important element in association and aggregation relationships.
Figures 2.13 and 2.14 show some relationships that are one-to-one and some that are
one-to-many. You indicate these relationships by putting a number at each end that
says how many relationships exist in each direction. For example, in figure 2.14, a one-
to-one relationship exists between a laptop and a keyboard. Similarly, in figure 2.13,
a printer may have only one computer, but that a computer may have zero or more
printers (0..*). If you were defining network printers, you might have a many-to-many

Computer

MonitorPrinter

Keyboard

1

1

1

10..*

1

Figure 2.13

Example of the classes that

might make up a complete

computer system

Flat Screen Monitor
Laptop

1
1

Keyboard

1

1
Figure 2.14

Example of a composition association
52 CHAPTER 2 THE LDAP INFORMATION MODEL

relationship instead, where printers could be associated with many computers just as
computers could be associated with many printers. Thus the number of relationships
between two classes can play an important part in designing all aspects of the directory.

Inheritance relationships

Many classes are related in that they are specific or general types of other classes. Spe-
cialization and generalization are ways of expressing inheritance relationships.

Figure 2.15 shows how Flat Screen Monitor and CRT Monitor classes spe-
cialize, or inherit from, the Monitor class. The arrow points to the more general class.

Unlike associations and aggregations, inheritance relationships can be directly trans-
lated into directory design elements using LDAP’s support for inheritance. For exam-
ple, you can define the flatScreenMonitor object class in LDAP to have a
superior class of monitor. The monitor class itself might even be defined as
abstract if you expect that all monitors will fall into one of the subclasses.

2.5.3 Modeling object instances

Once you’ve defined classes and the inheritance hierarchy, you can model instances of
objects based on the classes defined. Figure 2.16 shows an instantiation of the Flat
Screen Monitor class defined in the model in the previous section.

size : String
supportedResolution : String
brand : String
model : String
connector : String
scanRate : Integer

Monitor

horizontalDots : Integer
verticalDots : Integer

Flat Screen Monitor

dotPitch : Decimal

CRT Monitor
Figure 2.15

The Monitor class is specialized by

a Flat Screen Monitor class and a

CRT Monitor class.

size : String = 14"
supportedResolution : String = 1024x768, 800x600, 640x480
brand : String = Dell
model : String = Inspiron 3800 Internal
connector : String = Internal
scanRate : Integer = 60
horizontalDots : Integer = 1024
verticalDots : Integer = 768

myLaptop : Flat Screen Monitor

Figure 2.16

An instance of the Flat Screen

Monitor class includes attributes

from that class, including those

inherited from the Monitor class.
USING OBJECT MODELING TO DESIGN LDAP SCHEMA 53

Although it’s easy to think of an object instance as an entry (and in some cases it may
be), an entry can include multiple object instances if it includes both structural and
auxiliary classes. However, it is quite possible that an LDAP entry equivalent to the
object instance in figure 2.16 might look like this:

dn: cn=myLaptop,cn=Ethan Daniel,dc=manning,dc=com
objectClass: top
objectClass: monitor
objectClass: flatScreenMonitor
cn: myLaptop
size: 14"
supportedResolution: 1024x768
supportedResolution: 800x600
supportedResolution: 640x480
brand: Dell
model: Inspiron 3800 Internal
connector: Internal
scanRate: 60
horizontalDots: 1024
verticalDots: 768

Notice that this LDAP entry lists three class memberships. Most directory servers will
automatically add superclasses to an entry so that an entry can easily be searched by
any object class that it may be a member of through explicit specification or inherit-
ance. The added attribute called cn is assigned the instance name.

2.6 SUMMARY

In this chapter, you learned that information is stored in LDAP using entries, which
are in turn made up of attributes. You now understand why LDAP’s information
model and particularly standard schema make it easier for a wide variety of applica-
tions to use the directory.

We looked at how entries compare to rows in a relational database, including dif-
ferences between LDAP’s pseudo-object-oriented model and the relational model. We
also covered object classes and attribute types, with an understanding of how they
compare with similar concepts in other areas. Finally, we discussed how object classes
and attribute types can be modeled, while maintaining a focus on reusing existing
standard attributes.

In chapter 3, we’ll move from looking at the contents of entries to the naming and
positioning of entries within the directory.
54 CHAPTER 2 THE LDAP INFORMATION MODEL

C H A P T E R 3

Exploring the LDAP
namespace

3.1 What is a namespace? 56
3.2 Specifying distinguished names 59
3.3 Assigning the root naming context 64
3.4 Selecting and designing a directory tree 65
3.5 Summary 74
We discussed in chapter 2 how LDAP-enabled directories use a consistent informa-
tion model to represent information in the directory. Although the information
model is concerned with the representation of individual objects, it does not cover
how those objects relate to one another.

In this chapter, we will discuss how these individual objects, or entries, are posi-
tioned in a hierarchy that plays an important role in deciding how data in that direc-
tory will be secured, distributed, and managed. In turn, this hierarchy determines the
naming conventions of the LDAP entries.

By the end of the chapter, you will understand the answers to the following impor-
tant questions:

• What is a namespace? What does LDAP’s namespace look like? How is a hierar-
chical tree different than a flat structure?

• What is a directory tree, and why is it sometimes called a DIT? How can the tree
be used to relate data? Distinguish it?
55

• What is a distinguished name? What components does it consist of? How is
it written?

• What is the advantage of a flat tree over a deep tree? Why is a deep tree some-
times more important?

• What factors should be used to determine the relative distinguished name (RDN)?

• Should distinguished names be meaningful or unchanging unique identifiers?

• What is a Globally/Universally Unique ID (GUID/UUID)? When are these IDs
useful in LDAP? How are they generated?

3.1 WHAT IS A NAMESPACE?

Directory entries require names. For example, an entry in LDAP might be called
uid=csmith,dc=manning,dc=com or an entry in DNS might be called
www.manning.com. A directory server’s namespace refers to the names permitted and
used within a particular group of connected and potentially connected directories.
This namespace is usually defined at initial configuration of an LDAP-enabled server
by a system administrator.

The structure and contents of a name in the namespace can be meaningful or
meaningless. For example, the name given to the csmith entry is clearly meaningful,
whereas a sequential or generated number that is unrelated to the actual contents of
an entry may be meaningless outside the directory.

Namespace as used here is somewhat different than the namespace used in the XML
world. In LDAP, a server has a particular namespace; in XML, the namespace is pri-
marily used to qualify the tags used in elements to avoid naming collisions. However,
certain types of directory namespaces are designed to avoid naming collisions. For
example, if there are two people named Carole Johnson in an organization, the use of
a unique identifier rather than a full name in the namespace design prevents two
entries from being generated with the same name.

LDAP requires that each name in the namespace be unique. However, now that
directories are being linked more frequently, it is often necessary for people who design
and deploy directories to design and use a directory namespace that not only works
in a stand-alone manner, but also can be connected to other directories without having
names collide. In fact, some of the earliest pilot projects related to LDAP’s predecessor,
X.500, involved creating a global namespace in which any company could participate
and share directory information in much the same way that companies currently use
DNS to distribute host names.

Additionally, many directories are designed with people and accounts in mind; but
with relatively new standards like the CIM, this approach may not be enough. Sud-
denly, computers, networks, applications, and other entities need a logical place
within the global namespace.
56 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

3.1.1 Hierarchical namespaces

Entry names in LDAP are hierarchical: they are organized in a tree structure. Each
entry is given a name relative to its position in the tree. This relative name need only
be unique among entries that share the same parent entry. This is different from a
flat namespace, in which the name of an entity is unrelated to any other entities in
the namespace.

LDAP is not unique in having a hierarchical namespace. Let’s look at a couple of
examples of hierarchical namespaces. As you can see in figure 3.1, hosts on the Internet
employ hierarchical names. The use of a marketing container helps you differentiate
between the server named www that resides within the top level of your company and
another server with the same name that resides within the marketing domain.

A computer file system is another good example of a system with a hierarchical
namespace. In this case, files are contained within folders. Fully qualified filenames
are then created by stringing together the names of folders and the short filename,
usually separated by a slash (/) or backslash(\). For example, if two people have files
on a Linux system called .profile, those files are qualified by the name of the person’s
home folder. These full name for these two files might be /home/user1/.profile and /
home/user2/.profile, with each file potentially having different contents.

In the directory world, this type of trees is usually referred to as the directory infor-
mation tree (DIT).

Hierarchical
Namespace

Flat Namespace

www mail ftp mail www

ftp www

com

xyz

marketing

Figure 3.1 Host names on the Internet are an example of how a hierarchical

namespace can help to fully qualify the names of individual entities.
WHAT IS A NAMESPACE? 57

DIT functions

The DIT has multiple functions:

• The DIT allows entry names to be unique across enterprise boundaries. Each enter-
prise has names within the DIT that fall under their own place in the hierarchy.

• The DIT can be distributed. Most directory servers allow different levels within
the DIT to be placed on different servers (see figure 3.2). In many organizations
where data ownership is distributed, this function allows the people closer to
the data to manage their portion of a larger directory more easily.

This approach is similar to how IT organizations around the world split the
management of DNS across seemingly infinite groups of people. Such manage-
ment scalability is often one of the most attractive aspects of LDAP once prop-
erly enabled applications move beyond the development phase to the
deployment phase; at that point, scalable management is often an important
factor in how fast an application can be rolled out.

• The DIT facilitates security. Security rules in most directory servers are usually
relative to certain branches of the tree. In the latest Internet Drafts related to
access control, an access control rule can apply to a particular entry, or to that
entry plus all the entries below it in the hierarchy (see figure 3.3). This
approach is similar to how access control rules work in most other commercial
LDAP products.

In many modern directories, the need to add hierarchy in order to distribute direc-
tory information is much more important than the need to distribute for security

. . .

Located on
Another Server

Entry

EntryEntry

EntryEntry

Figure 3.2

Most LDAP-enabled directory software allows entries

to be split across multiple servers, but typically only

along the hierarchy.
58 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

reasons. This is true because in many cases, access control rules can be specified in a
way that can be applied selectively within a part of the directory.

3.2 SPECIFYING DISTINGUISHED NAMES

The fully qualified name of an LDAP entry is called its distinguished name or DN. This
distinguished name can be broken into two pieces:

• The RDN

• The base

Every LDAP operation that changes the LDAP directory uses the full distinguished
name to identify the entry to affect. Similarly, operations that authenticate the user to

the directory also require specification of the full
distinguished name. Search operations may
involve all or part of the distinguished name, as
we will discuss in chapter 4.

The relative distinguished name is composed
of one or more attributes from the entry. For
example, if you have the cn attribute type with a
value of Joan Smith in an entry, the RDN
might be cn=Joan Smith (see figure 3.4).

The base is formed by joining the names of the current entry’s ancestors. You can cre-
ate the base by walking up the tree from your current entry and adding the RDN of
each entry in your path. Each naming component is then separated with a comma.
An example of a base is dc=xyz, dc=com (see figure 3.5).

Think of the distinguished name as a way to reference an individual entry within
the directory in much the same way that a primary key is used to access a particular
record in a database. The concept of a distinguished name is extremely important to

. . .

Entry

EntryEntry

EntryEntry

Access Control Lists

Applied Below This Point

. . .

Figure 3.3

In most directory servers,

access controls can be

applied at different levels

in the hierarchy.

cn=Joan
Smith

objectClass: top
objectClass:
person
cn: Joan Smith
sn: Smith
givenName: Joan

Figure 3.4 The cn attribute is

selected as the RDN for this entry.
SPECIFYING DISTINGUISHED NAMES 59

LDAP, so we will look a bit closer at RDNs and bases to be sure you understand these
logical segments of an entry’s distinguished name.

3.2.1 Choosing a relative distinguished name attribute

As we just discussed, the RDN of the entry is equal to one of the attributes in an
entry. This is an important part of the standard, although some directory servers do
not enforce it.

In virtually every case, the best attribute to choose is one that is unique and
unchanging, even if it must be created or generated. If you want to use the same
attribute as the RDN for each entry, it is important to select an attribute that everyone
has. Some companies begin by using employee numbers, only to remember that the
human resources (HR) department doesn’t assign such numbers to nonemployees,
such as contractors. Others begin with semiprivate information, such as Social Secu-
rity numbers, but then realize that distinguished names are relatively public informa-
tion within the directory.

Because distinguished names are rarely displayed outside the confines of the most
basic LDAP browsing tools, there is no requirement that the RDN have any meaning
when displayed. In fact, it is highly recommended that these identifiers have no mean-
ing, particularly if the content of the attribute might change. For example, if you’re
naming organizational units, unique department names may have been assigned; but
in all likelihood, those departments may change names over time. A better identifier
in this case is an unchanging department code, or simply a generated unique attribute.

If the RDN attribute is binary, it will be encoded using the Base64 standard. All
information in the distinguished name must be represented in the UTF-8 character set.

Common names as RDNs

Don’t use a person’s or organization’s name as an RDN. Companies, divisions, and
even people change their names all the time. The most common example in Western
civilization is a woman changing her last name when she marries. If you consider that
an entry’s distinguished name is used as a reference to that entry in groups and other
entries, you see that changing the distinguished name is an inconvenience—particu-
larly because LDAP does not guarantee relational integrity on the server.

dc=xyz

dc=com

cn=Joan Smith

Distinguished Name
cn=Joan Smith, dc=xyz, dc=com

Base

RDN

Figure 3.5 Combining the RDN with a base-naming context gives the

entry a narrower context.
60 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

Generating new attributes for the RDN

If an appropriate attribute doesn’t already exist, one should be created. Doing so early
in a directory project rather than after a directory has been deployed will save you
considerable time and headache.

There are a number of ways to do this, including:

• Sequential assignment of a numeric or alphanumeric code

• Giving users the ability to pick their own at request time

• Using an algorithm that generates UUIDs

Assigning identifiers sequentially works well in many directory environments.
Because LDAP doesn’t support transactions, you can’t make a reliable incrementing
counter using the directory itself; but with enough consideration within account or
entry management tools, creating such an attribute is painless.

Giving users the ability to pick their own identifier might be right in the case
where an attribute like uid will be used as both the RDN and a login ID. If you
intend to display the attribute and RDN, keep in mind who is being allowed to select
their own identifiers—you don’t want users to choose four-letter words or other
unwelcome values.

If the identifier should be unique in multiple directory environments, the best way
to assign one may be to generate it using a special algorithm that focuses on making
a unique value across multiple systems. An example of an appropriate algorithm is doc-
umented at http://www.opengroup.org/onlinepubs/9629399/apdxa.htm.

Nonunique attributes in the RDN

If no attributes can be guaranteed to be unique on their own, then best practice is to
create or generate such a unique identifier. However, if doing so is not practical, most

directories (with the exception of Microsoft Active
Directory) support multiple attributes as part of the
RDN. To assign multiple attributes, you put a plus
sign (+) between each of the attributes that make up
the RDN, as shown in figure 3.6.

Note that even though a directory supports multivalued RDNs, many applications do
not display them well and using them in general tends to cause more problems than it
solves. It is usually a better idea to create unique identifiers specifically for the pur-
pose of ensuring uniqueness, if such a unique attribute doesn’t already exist.

Multiple attribute values

If the chosen attribute has multiple values, you can use any of the values as the RDN
value. You can do so because the RDN is separate from the actual attribute.

Although it may not seem like a big deal, having multiple values in the attribute
used for the RDN is an issue. A generic LDAP-enabled application has no easy,

cn=John Smith + ou=Sales
Figure 3.6 RDNs can contain

multiple attributes if required to

make the entry name unique at a

particular level in the hierarchy.
SPECIFYING DISTINGUISHED NAMES 61

programmatic way to decide which attribute should be used, particularly because there
is no guarantee that attribute values will be in any particular order.

NOTE People using Active Directory don’t need to worry about using multivalued
attributes as RDNs as a design alternative, because Active Directory doesn’t
allow you to do so.

To avoid this problem, focus on attributes that are not only unique, but single-val-
ued. An example is uid.

Active Directory limitations

Microsoft Active Directory only allows cn, ou, l, o, and dc attributes as naming
components. This limitation can be an issue for people with both Microsoft and
other directories, particularly if the cn attribute is not unique and you want a sepa-
rate unique identifier. In most directories other than Microsoft’s, cn is a human-
readable name for a person or other entity. This type of information is generally bad
as an RDN in the first place.

However messy this sounds, you should note that Active Directory is a little more
intelligent than many other directories about allowing for renaming of non-leaf
nodes, which are entries that contain child entries. For these non-leaf entries, such as
organizations, changing the RDN of the entry would require the distinguished names
and references to all its children to be updated—not a fun ordeal with most direc-
tory products.

3.2.2 Determining the base

The base contains the RDN of each ancestor
of the current entry, separated by commas.
Figure 3.7 shows a simple distinguished
name base. Note that the base is also a valid
name for an entry.

As you will see more clearly in chapter 4, the base of the entry can play an important
role in defining what results are returned from a particular search. Additionally, an
entry with the name equal to the base must exist before you create an entry with that
base. Thus you should not be able to create an entry called

cn=Jane Chen, ou=Sales, dc=manning, dc=com

without first creating an entry called

ou=Sales, dc=manning, dc=com

Note that in these examples, there is a space after the comma that separates each RDN
component. Any amount of whitespace around the comma is ignored as part of the
entry’s name. The comma and any whitespace merely act as a separator. If you want
to use an RDN value that ends in a space, you should escape the space by placing a
backslash (\) before it; however, such cases should be few and far between.

ou=Marketing,dc=manning,dc=com

Figure 3.7 The base of the distinguished

name includes the ancestors of the current

entry, separated by commas.
62 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

A simple example: Mike Lee

As you just learned, the distinguished name of an entry is generated by tracing a path
up the naming tree from an individual entry to the root. Each ancestor further quali-
fies the one below it, thus helping to distinguish it from similar entries in other parts
of the tree.

An LDAP directory tree for the local zoo might look something like the diagram
in figure 3.8.

To determine the distinguished name for Mike Lee, you climb the tree and add
the names of his ancestors, separated by commas. Doing so gives you his distin-
guished name:

cn=Mike Lee, ou=Staff, o=BigZoo, c=US

Using higher nodes in the tree as part of the full entry name offers important contex-
tual information that allows you to easily differentiate between different entries with
otherwise indistinguishable names. For example, when you refer to his distinguished
name, you are saying that it is not just any Mike Lee you are talking about, but rather
the one under the ou=Staff, o=BigZoo, c=US branch of the directory tree (see
figure 3.9).

As we noted in the previous section, each entry in the tree is always assigned an
RDN composed of one or more of its attributes. Here, Mike Lee is assigned the RDN,

ou=Animals

o=BigZoo, c=US

ou=Staff

cn=Mike Lee cn=Mary Lou

Figure 3.8

Example of a hierarchical namespace for

the Big Zoo

ou=Animals

o=BigZoo, c=US

ou=Staff

cn=Mary Lou

Distinguished Name
cn=Mike Lee, ou=Staff,

o=Big Zoo, c=US

cn=Mike Lee

Figure 3.9

Mike Lee’s distinguished name is formed by his

RDN and the RDN of his parents in the tree.
SPECIFYING DISTINGUISHED NAMES 63

cn=Mike Lee; you expect that his entry
contains an attribute with that type and
value (see figure 3.10).

As expected, the entry contains that
attribute, and the entry is valid. Also notice
that the attributes listed in the base are not
part of the entry—this fact is important,
because any attribute not in the entry will
not be found in a standard search.

3.3 ASSIGNING THE ROOT NAMING CONTEXT

LDAP-enabled directory servers do not typically allow you to use arbitrary bases.
Instead, a server is configured with one or more suffixes for which it will contain data.
This suffix will be the entry name of the server’s highest node in the directory tree.

The top level entry name supported by a particular server is sometimes referred to
as the server’s root naming context. Some servers support more than one root naming
context; others do not.

These root naming contexts are usually assigned in one of two ways by the indi-
vidual or individuals managing the server:

• Traditional style

• Domain component style

3.3.1 Traditional style of assigning the root name context

The traditional convention for assigning the root naming context has been to use
o=company,c=country, where company is a free-form company name and
country is a two-character ISO-standard country code such as US or CA. This con-
vention was inherited from LDAP’s X.500 ancestry (see figure 3.11).

The problem with using traditional root naming contexts is that few people go
through the trouble of registering organization names with ANSI or other registration
authorities. Thus it’s easy for two groups with a similar organization name to have
completely different directories starting with the same root. Because the root naming

o=XYZ Corp.

c=US

o=ABC Corp.

ou=Software ou=Hardware ou=Finance

organization entries

organizationalUnit entries

Figure 3.11 Traditional root naming contexts inherited from X.500 directory standards

cn: Mike Lee
sn: Lee

objectClass: person

cn=Mike Lee, ou=Staff, o=Big Zoo, c=US

Figure 3.10 Mike’s entry must contain the

attribute used as his RDN.
64 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

context is designed to make your entry names globally unique, this ambiguity can
cause problems.

3.3.2 Domain component style

of assigning the root name context

More common today is the root naming context dc=company,dc=domain. In
this instance, company and domain are two or more parts of an organization’s DNS
domain name. Thus abc.com might have a root naming context of dc=abc,
dc=com as shown in figure 3.12.

One drawback to using domain component (dc) style root naming contexts is that
some certificate authorities (CAs) only allow traditional X.500 attributes (c, o, ou,
cn, and so forth) in the subject names of the certificates they issue. We will discuss
digital certificates in chapter 13, but for now it is enough to know that issues in this
regard are highly dependent on the way applications using certificates plan to map
those certificate names to names in the directory. As you will see, this process is criti-
cal when you’re doing directory-based authorization and users authenticate using dig-
ital certificates.

NOTE Users of Microsoft Active Directory do not have a choice about the style of
root naming context that will be used, because Active Directory requires
the top levels of the tree to be dcs. Most other directories leave the decision
to the person designing the directory. If you want to work with Active
Directory, you should keep this point in mind.

3.4 SELECTING AND DESIGNING A DIRECTORY TREE

We just talked about selecting naming components. What about defining the holistic
view of a particular directory tree? After all, it is sometimes difficult to know exactly
what will be stored in a directory.

Because the standards do not dictate best practices for designing a hierarchical
directory tree, many companies that go through the effort of deploying new directories
get stuck for months designing a tree to meet the needs of their organization.

dc=xyz

dc=com

dc=abc

dc=software dc=hardware dc=finance

domainComponent
entries

domainComponents
entries

Figure 3.12 The domain component style of assigning root naming contexts is better suited

for the Internet.
SELECTING AND DESIGNING A DIRECTORY TREE 65

Designing a tree is difficult because different tree structures present different advan-
tages and disadvantages in different environments.

In this section, we’ll look at a variety of common directory trees used by companies
today and some of the benefits and disadvantages of using each. Because directories
designed for use in extranets, intranets, and the Internet have different needs, our dis-
cussion about directory trees will be based on trees that may be appropriate for each
of these directory types.

In general, directory trees can be referred to as flat or deep. Flat trees are those that
have little hierarchy, whereas deep trees may have considerable hierarchy. In general,
it is a good design practice to keep the directory tree as flat as possible while still main-
taining any level of hierarchy necessary to offer flexibility in the distribution of direc-
tory information and access control.

3.4.1 Intranet directories

In most large companies, the organization designing the directory has responsibility
only for those directories in a particular segment of the company. Even corporate
organizations may not be responsible for managing users and applications in some
fairly autonomous business units. In small-to-midsize companies, a single organiza-
tion may be responsible for managing the enterprise’s directory. In almost any case,
the directory being designed is expected to “leave room” for the entire company, even
if the entire company will not at first be managed in the directory.

The types of trees most commonly used for intranets are:

• Organization-based

• Flat

• Geographic

Organization-based trees

Many people tasked for the first time to create an organization-based directory create
a hierarchy that models the organizations in an organizational chart. For example, if
the company is split into sales, operations, and engineering, the resulting tree will also
be split this way. The diagram in figure 3.13 shows this type of directory tree.

This type of tree is appealing in many ways. First, IT organizations in many com-
panies are split along organizational boundaries. These boundaries may not be along
functional lines, such as sales and engineering, but they’re probably along major prod-
uct lines or markets.

NOTE We’ll use the branches labeled Employees, Groups, and Applications in fig-
ure 3.13 in most of the designs featured in this section, although they may
be located in different positions in the directory tree. Although we use read-
able RDNs that include people’s names in these diagrams, we do so prima-
rily for readability—this approach is not meant to endorse the bad practice
of using these types of entry names.
66 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

Dividing the tree along such lines leaves room for other organizations that may not
be active in the directory at the start. It also leaves room for a type of directory man-
agement called delegated administration that we will discuss in part 2.

However, such trees do present a problem. To understand you need to consider
nonpeople LDAP entries (such as groups) that might need to point to a list of other
LDAP entries. References to one entry from other entries are done using the distin-
guished name of the entry. If that distinguished name changes, nothing in the LDAP
specification encourages referential integrity checking that will keep those pointers ref-
erencing the right entry. This situation is even more complicated if a data store outside
the directory uses the distinguished name as a reference.

As anyone who has ever worked in a large company knows, people change divisions
and departments all the time. If such a change has the potential to break groups and
applications, then you should avoid such designs where possible.

Flat trees

We come now to the opposite side of the intranet directory design spectrum: the rela-
tively flat directory tree. In this design, shown in figure 3.14, the Employees branch
of the tree is located beneath the company’s root naming context. Employees will
always be employees, so it is rather unlikely that they will be moved to another part of
the directory tree.

Because the tree is so flat, entries are typically added and deleted only when some-
one is hired or fired, not when internal events happen. Attributes within the entry can
hold the additional information required to find out the division or department to
which an entry belongs.

Perfect, right? Not quite. There are a few drawbacks to using such a simple
namespace. The main one is that most directory server products do not allow a single
branch of the tree to be split across multiple servers. Although every directory on the
market can handle the size of most intranet-focused directories, there are often

dc=big-company,dc=com

ou=Operations ou=Engineering

ou=Employees ou=Groups

ou=Sales

cn=Judy Smith cn=Kyle Wu

ou=Applications

Figure 3.13 Organization-based trees are commonly selected to allow for multiple

organizations within an enterprise to manage their own directory servers, while

ensuring that they’ll work well together.
SELECTING AND DESIGNING A DIRECTORY TREE 67

political or other nontechnical motivations for splitting the data across multiple
machines. Some products also allow for more granular access control when the tree is
divided along more meaningful organizational boundaries.

Geographic trees

There are still a few places where division of the tree must happen for reasons that are
technical in nature. One such reason is geography: links between continents, coun-
tries, or even relatively small distances may not always be desired.

In such situations, having a directory that is slow or inaccessible may limit your
ability to deploy directory-enabled applications globally without decreasing that appli-
cation’s ability to function reliably. To get around this issue, the most common solu-
tion is to design a directory tree that is geographic, rather than organizational. The
diagram in figure 3.15 shows a tree designed this way.

In this example, the regions are quite large and broad, but it would be entirely pos-
sible to split the tree into smaller regions. Typically, each region will have a master copy
of the data in that region, with referrals or replicated copies of the data in other regions.

Because geographic and political boundaries do not always match, this type of
directory tree may not solve any problems in the area of distributed management. In
fact, it may contribute to management issues if political and geographic boundaries

dc=big-company,dc=com

ou=Employees ou=Groups

cn=Judy Smith cn=Kyle Wu

ou=Applications

Figure 3.14 A flat tree reduces significant adjustments in the position of

entries within a directory tree that might otherwise occur due to typical

organizational changes.

dc=big-company,dc=com

ou=Asia Pacific ou=EMEA

ou=Employees ou=Groups

ou=North America

cn=Judy Smith cn=Kyle Wu

ou=Applications

Figure 3.15 Geographic trees allow directories to be split in ways that make sense

to ensure availability.
68 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

overlap poorly. Considering that many company help desks and support organizations
are regional in order to be available at the right time to local users, a high likelihood
exists in many organizations that geographic distribution will work well with existing
political boundaries.

In the organizational tree design, one issue is that employees may move between
organizations. Although this is true to an extent with the geographic design, it is less
of a problem because in many companies, transfers normally occur within a particular
region. This benefit may not be realized if people move between regions frequently.
Even if movement is rare, a process needs to be in place for coordinating it.

In the end, this design may be more complicated and difficult to maintain than
the flat tree described earlier. You can avoid using this type of tree and use a flat tree
by simply replicating the entire contents of a centralized directory containing a flat
tree to other directories in the various regions. Directory servers that support multi-
master replication can even allow for entries to be managed directly in multiple
regions if bandwidth permits. Unfortunately, not all directory services support multi-
master replication; so, if a user in another region needs to make a change to an entry,
the possibility exists that the change will not be able to proceed if network or other
issues are involved.

3.4.2 Internet directories

Internet directory designs tend to be much different than intranet designs, because
they’re outwardly focused and need to be specialized for containing customers or
users rather than people in the internal organization. There are exceptions, but they
usually more closely resemble either an intranet or extranet design.

The types of trees most commonly used for Internets are:

• Internal and external users

• External users with groups

• Application branches

Internal and external users

One way to organize an Internet directory is to split the tree into two sets of users.
The first set contains the people on the organization’s staff who might use such an
application with special privileges. The other set contains those users who belong to a
potentially much larger base of external users. The diagram in figure 3.16 shows how
such a tree might look.

The advantage of separating these users is that there are usually significantly dif-
ferent processes and restrictions for the management of each group. External users,
shown in figure 3.16 under the ou=Users branch of the directory tree, may be able
to create themselves with as little information as an email address. However, internal
users, under the ou=Staff branch, must be added by a privileged administrator
based on the staff member’s responsibilities in the organization.
SELECTING AND DESIGNING A DIRECTORY TREE 69

There is no reason the ou=Staff portion of the tree cannot simply contain the
information from an intranet-focused directory. In fact, it can be arranged in one of
the intranet designs discussed in the previous section.

External users with groups

Do different classes of external users need different levels of privileges? Are there mail-
ing lists that some customers belong to, but others do not? If the answer to either of
these questions is yes, you should consider the early addition of a branch of the direc-
tory tree dedicated to the storage of group information that can be used in these situ-
ations. The diagram in figure 3.17 shows how such a tree might look.

Once again, the ou=Staff portion can contain either a small set of users with
management rights within an application or some representation of the information
in an intranet-focused directory service.

This approach has a disadvantage. Having a single Groups branch that is not sub-
divided does not allow different Internet applications to create their own groups easily
without cluttering the Groups directory with groups from all applications. One way
to resolve this situation is to add more hierarchy to the Groups branch; however, doing
so tends to automatically isolate each application without taking into account that
there should be some level of group sharing between applications.

Application branches

One potential solution to the issue just mentioned is not to create a top-level
Groups branch at all. Rather, understand that groups are only one piece of informa-
tion that will be used to make application-level decisions. For example, in addition

dc=big-company,dc=com

ou=Users ou=Staff

cn=Jan Brown cn=Sam Smith

Figure 3.16

Directory tree for an Internet

environment that separates

external and internal users

dc=big-company,dc=com

ou=Users ou=Staff

cn=Jan Brown cn=Sam Smith

ou=Groups

Figure 3.17 A directory tree with a group branch allows for easier segmen-

tation of external users and the creation of groups that can facilitate access

control and mailing lists.
70 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

to groups, applications might want to store general configuration information in the
directory. Additionally, certain groups, configurations, or other information may be
used not so much for a single application as for a global setting that applies across
the Internet environment.

Figure 3.18 shows a tree that fits this type of information. In this tree, a special
Applications branch contains a separate branch for each application. Those applica-
tions in turn may have configurations, groups, and other branches that are useful to
that application. In addition to having a branch for each application, this tree also des-
ignates a branch for global groups and configuration that allows certain information
to apply across the Internet environment.

Such a tree gives you incredible flexibility when you’re developing a directory that can
be used by many Internet applications. However, it does make the directory’s design
more complex overall, and may not be easy to support with off-the-shelf provisioning
and security applications.

3.4.3 Extranet directories

Extranets are becoming predominant, and the use of directories in extranets is getting
to be a necessity. However, extranet directory design is extremely tricky, because
much of it depends on multiple political entities. For this reason, much of the design
for an extranet directory is highly dependent on the ability of the partners to agree on
how people, groups, and other information will be managed.

The types of trees most commonly used for extranets include:

• Equal partners

• Internal and external with partner type segmentation

• Internal and external with partner segmentation

In addition to these three extranet-focused designs, an extranet directory may also
use designs similar to those mentioned for the other directory types—particularly flat

dc=big-company,dc=com

ou=Users ou=Staff

cn=Jan Brown cn=Sam Smith

ou=Applications

ou=Global ou=Premium

ou=Config ou=Groups

Figure 3.18 A branch containing information for applications is added to allow more

extensive use of the directory in the Internet environment.
SELECTING AND DESIGNING A DIRECTORY TREE 71

trees like those advocated for intranet design, and trees that only separate internal
and external users, as shown in the Internet design section. Both of these alternate
designs are particularly applicable if partners are generally small and do not have
their own directory servers that might be used to seed or synchronize the most basic
user information.

Equal partners design

The most basic extranet design simply acts as if each partner is completely equal and
will be directly managing or otherwise providing its information. In figure 3.19, both
big-company and componentco are equal within the directory tree. This design
works well if big-company and componentco have their own directory environments
and perceived value (single sign-on) to extranet users for people in both companies.

This design doesn’t make much sense if one company will be maintaining all of the
directory information, or even if the second company will be managing its users
through interfaces provided by the first company. This design also doesn’t make sense
in cases with smaller numbers of users, because segmentation between users can often
be done just as easily with attributes. You should restrict the use of this design to
instances where both companies have a significant exposure to directories and will
potentially implement direct links between pieces of their directory environments.

Internal and external with partner type segmentation

When discussing directory trees for Internet directories, we showed a tree in which
internal and external users are separated. Such a design also works well in a hub-and-
spoke extranet environment where one company hosts the directory environment
and everyone else uses it.

One way to extend this design within an extranet environment is to segment the
“spoke” companies based on the their function (supplier, customer, and so forth). This

dc=big-company

ou=People ou=Groups

cn=Jose Reyes cn=Fred Futon

dc=com

dc=componentco

ou=People ou=Groups

Figure 3.19 Equal partners design is one way to name information in an extranet direc-

tory such that multiple companies are represented within a single directory namespace.
72 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

design is useful if certain applications are pointed at a directory that might be partially
replicated to an application directory, which will be accessed only by a certain type of
partner. Figure 3.20 shows this type of directory tree.

This tree is obviously quite a bit more complicated than the trees shown previously.
As mentioned earlier, the more complicated the tree, the more difficult it may be to
manage. One issue with managing this particular tree would be the use of off-the-shelf
applications. Many may not be flexible enough to allow user management in the right
parts of the directory.

Internal and external with partner segmentation

Rather than add an extra layer for partner type, you may simply want to flatten the
tree a little such that the only segmentation under the external branch is by company.
This design is a better choice if there is no perceived difference between how different
types of partners will be managed or replicated. Figure 3.21 shows an example of this
kind of tree.

dc=big-company,dc=com

ou=Internal ou=External

ou=Vendors cn=Customers

ou=Components R
US

ou=PartLand

cn=Jose Reyes cn=Fred Futon

Figure 3.20 This directory tree segments partners by both name and

function in order to allow for partial replication and better access con-

trol in some directories.

dc=big-company,dc=com

ou=Internal ou=External

ou=Components R
US

ou=PartLand

cn=Jose Reyes cn=Fred Futon

Figure 3.21

This directory tree is

similar to the previous

one, but it removes the

layer that segments

partners by type or

function.
SELECTING AND DESIGNING A DIRECTORY TREE 73

Like the previous design, this design’s drawback is its complexity, but it does sim-
plify situations where a partner might be both a vendor and a customer. Once again,
the biggest issue may be in the support for off-the-shelf management applications.

3.5 SUMMARY

This chapter introduced the concept of the hierarchical LDAP namespace and entry
naming. We discussed various potential design types and their respective advantages
and disadvantages. In the end, the key thing to remember is that a flat tree is best, but
you can add hierarchy where it helps with management and applications.

You also learned that entries are named by a unique distinguished name; these
names must be unique and should be static whenever possible. We also discussed why
distinguished names should almost never contain a personal or organizational name.

In chapter 4, we move from discussing directory concepts and design to under-
standing its most basic operation: searching.
74 CHAPTER 3 EXPLORING THE LDAP NAMESPACE

C H A P T E R 4

Search criteria

4.1 Performing a search 76
4.2 Where to search: base and scope 76
4.3 What to evaluate: search filters 78
4.4 What to return: the attribute

return list 87

4.5 LDAP search criteria vs.
SQL queries 87

4.6 Increasing search performance 88
4.7 Summary 89
This chapter delves into the world of LDAP searching. We will be answering the fol-
lowing questions:

• What makes up the LDAP search criteria? When are they used?

• What are the search base and scope? How do they affect the entries returned?

• How is the search filter constructed? What common pitfalls do you need to
avoid with search filters?

• What search criteria offer the best performance? Worst?

• What similarities and differences exist between LDAP searches and SQL queries?
75

4.1 PERFORMING A SEARCH

When an LDAP client asks a directory server for information, it does so by passing a
relatively simple set of search criteria that tells the server a number of things:

• What part of the directory tree will be searched.

• What qualities must returned entries contain or not
contain.

• What information from matching entries should be
returned.

The server will take these criteria, determine whether the
connected client has the privileges necessary to perform a
search using the given criteria, and return all the results the
client is authorized to receive. Figure 4.1 shows some of
the more important search criteria.

4.2 WHERE TO SEARCH: BASE AND SCOPE

The criteria used to determine the portion of the directory tree to which the search
will be applied involve two factors. The first factor is the search base. The base is sim-
ply the distinguished name of an entry in the directory that will be the topmost entry
associated with the search. The other factor is the search scope. The server uses the
scope to determine how far below the search base it will look for entries that match
the rest of the search criteria.

4.2.1 Search base

In chapter 3, we spent considerable time discussing the directory tree and LDAP
namespace. Specifying a search base is simply a way for you to confine your search to
branches of the tree. Note that searches never crawl up the tree from the search
base—they occur only at or below the base.

Examples of search bases might be:

• dc=manning,dc=com

• ou=Authors,dc=manning,dc=com

These bases could also contain multivalued RDNs or other components allowed in
the distinguished names of entries.

Some special search bases also exist. Servers supporting LDAPv3 support the Root
Directory Server Entry (RootDSE) which is represented by an empty distinguished
name (““). As you will see soon, this search base, combined with other search criteria,
returns important information about the server’s capabilities. Other special search
bases exist for retrieving server schema and monitoring information.

Base

Scope

Filter

Search
Criteria

Figure 4.1 At minimum,

the search criteria are

made up of the base,

scope, and filter, which

determine the where and

what of a search.
76 CHAPTER 4 SEARCH CRITERIA

4.2.2 Search scope

As mentioned previously, the search scope tells the server exactly which entries at
or below the search base should be evaluated. The LDAP protocol defines three
search scopes:

• Base

• One-level

• Subtree

In this section we will look at what entries can be returned with each of these
search scopes.

Base scope

In figure 4.2, a search for Sam Smith’s record will never return results, because that
record is not evaluated as part of the search. However, a search for an entry with any
objectClass value will return the dc=manning,dc=com entry.

The LDAP protocol does not offer an operation to read an entry from the directory
by name. Instead, you can read an entry directly by specifying a search with a search
base equal to the distinguished name to be read, and a base search scope.

One-level scope

The one-level scope allows you to search only those entries directly below the base
you specified for the current search (see figure 4.3). This scope will not return the
entry located at the search base. A search on the presence of the objectClass
attribute will have the effect of listing all of the search base’s immediate children.

ou=Authors ou=Staff

cn=Jan Brown cn=Sam Smith

dc=manning,dc=com

Figure 4.2

The base scope evaluates only a

single entry.

dc=manning,dc=com

cn=Jan Brown cn=Sam Smith

ou=Authors ou=Staff Figure 4.3

The one-level scope

includes only those

entries below the

search base.
WHERE TO SEARCH: BASE AND SCOPE 77

This is an important scope when you’re creating graphical applications that need to
open and close branches of the directory tree. If you expect that the application will
need to traverse the entire directory tree below the base, one-level scope is the way to
do it unless the number of entries in the directory is small enough that returning and
caching the full tree will be more efficient.

Subtree scope

Rather than return only the immediate children of the search base, the subtree scope
returns all descendants matching the given filter. Searching for the presence of
objectClass will return all entries below the search base. Unlike the one-level
search, the subtree search evaluates the base as well as entries below the base in the
tree. Figure 4.4 shows the results of a subtree search from the top of the directory tree.

Most applications that do not have detailed directory tree requirements use sub-
tree searching to find entries where the distinguished name of the entry is not
already known.

4.3 WHAT TO EVALUATE: SEARCH FILTERS

If the search scope and base tell you where to look for matching entries, the search fil-
ter tells you under what conditions an entry in the specified location should be
returned. LDAP filters can be as simple as requiring that returned entries have a par-
ticular attribute. More complex filters can contain many different tests that can be
used to determine if an entry should be returned.

There are seven basic types of LDAP filters:

• Presence

• Equality

• Substring

• Greater-than or equal

dc=manning,dc=com

ou=Authors ou=Staff

cn=Jan Brown cn=Sam Smith

Figure 4.4 The subtree search returns all descendants of the base,

including the base.
78 CHAPTER 4 SEARCH CRITERIA

• Less-than or equal

• Approximate

• Extensible

It is also possible to combine these filters using AND/OR filters and to negate filters
or groups of filters using NOT filters.

The filter or set of filters supplied by the client is applied by the server against each
entry in the location identified by the scope and base. If the filter is true for the entry,
then that entry will be returned. If it’s false, the entry is ignored and not returned as
part of the search results.

4.3.1 Presence filters

A presence filter simply requires that an entry have any value for a particular attribute
type. Figure 4.5 shows an example of a presence filter that returns any entry with the
sn (surname) attribute.

Using the ldapsearch command and what you’ve already learned about filters, you
can create a complete search using a presence filter:

> ldapsearch -b "dc=manning,dc=com" -s sub "(objectClass=*)"

Notice the parentheses around the filter. Although they are not necessary with most
LDAP clients when using a single search filter, it is good practice to always surround
each filter component with parentheses—this is the way standards documents state
that filters should appear.

You will get results in LDIF that look something like this:

dn: cn=John Johnson,dc=manning,dc=com
cn: John Johnson
sn: Johnson
objectClass: person
objectClass: top

(more entries...)

Example: sn=*

sn = *

Attribute is equal to Any Value

sn

Results
Contain

Anderson
Lee
Smith
Zimmerman

Figure 4.5

A presence filter (sn=*) returns all entries

that have any value associated with the

specified attribute.
WHAT TO EVALUATE: SEARCH FILTERS 79

This entry is returned because it is at or below the dc=manning,dc=com branch of
the directory tree, as specified by the base and scope arguments, and contains an
objectClass attribute as required by the search filter.

Had the filter been (uid=*), this entry would not have been returned, because
it does not contain that attribute. Nor would the entry have been returned had the
scope been base rather than subtree (sub).

A presence filter of (objectClass=*) with a scope of base and a search base
equal to a particular distinguished name is a common way to read in an entry where
the distinguished name is already known. This filter works because every entry is
required to have one or more associated objectClasses. The ability to read an entry
this way is important, because the distinguished name itself is not an attribute and is
not typically evaluated as part of matching the search filter.

For example, suppose you do the following search:

> ldapsearch -b "dc=manning,dc=com" -s sub "(dc=*)"

The John Johnson entry will not be retrieved, because of the nonevaluation of the
distinguished name. Using (cn=*) would return the entry because the entry con-
tains the cn attribute, not because the distinguished name contains that attribute.

4.3.2 Exact equality filters

An equality matching filter limits the entries returned as part of the search results to
those that contain a specified attribute and value. This is different from presence
matching, which only asks that an entry contain a given attribute. Figure 4.6 expands
a simple equality filter that looks for entries with Smith in the sn attribute.

The following example using the ldapsearch command also shows an equality
search:

> ldapsearch -b "dc=manning,dc=com" -s sub "(sn=Johnson)"

The John Johnson entry will be returned by this search, because it contains the sn
attribute with an associated value of Johnson. Because the sn attribute is defined as
case insensitive, doing an exact search for (sn=johnson) or (sn=joHnSoN) will
also return the John Johnson entry. Appendix A offers a reference to a large number
of standardized attribute types, including their syntax.

Example: sn=Smith

sn = Smith

Attribute is equal to Specific Value

sn

Results
Contain

Anderson
Lee
Smith
Zimmerman

Figure 4.6

An equality filter (sn=Smith) returns any

entry that contains the given attribute

with a value equal to the value specified

in the filter.
80 CHAPTER 4 SEARCH CRITERIA

Most directory servers offer their best performance for equality searches. This is
the case partly because of easier indexing, but also because exact equality searches are
the most commonly used search filters in applications that make programmatic use
of directories.

To understand why, consider an application that uses the directory as a repository
for identity information. When given an ID, the application wants passwords and
other information associated with that identity. When the application performs such
a lookup to find this information, it does so in the most exact way possible. After all,
if you log in as jjohnson, it is important that there is no ambiguity about whether
jjohnson is John Johnson or Jeff Johnson. Therefore, the application might query on
a unique attribute called uid that contains unique user identities, such as jjohnson.
This process ensures that the application can locate an exact entry. Mail-relaying soft-
ware typically performs similar exact matching, because it is imperative that email for
a single email address be delivered only to the appropriate mail servers and mailboxes.

These common uses do not mean that exact equality matching is not used to per-
form searches that might return multiple results—far from it. White pages applica-
tions, unlike security applications, need to find as many matches as possible for
potentially ambiguous user input. After all, users are unlikely to know that they should
look up John Johnson as jjohnson. In fact, a user may be unaware that John’s name
is actually Jonathan. In this type of situation, an exact match on a nonunique field is
both possible and useful. A search for a last name of Johnson offers a good choice of
matches from which to select.

Similarly, an administration interface that assigns users to groups or roles might
need to do this type of matching in order to give administrators the ability to locate
appropriate users. Once added, the service that uses these groups and roles would use
exact equality matching to locate the exact entry identified as part of a given group.

4.3.3 Substring matching

As we just mentioned, white pages applications have different requirements than
many other types of applications. The basic need is for the ability to match the par-
tial information a user might know with a list of results that have a good chance of
being what that user needs. LDAP offers additional types of matching to meet these
higher requirements.

The most commonly used search filter, other than exact equality and presence, is
the substring filter. The substring filter looks simple, but is in fact much different than
it first appears.

Figure 4.7 shows both a valid and an invalid substring search filter. The valid filter
shows a search for the characters Don anywhere in the cn attribute. The invalid filter

cn = *Don*

cn = *D*nl*

Right:

Wrong:

Figure 4.7

An example of a substring filter that correctly queries for entries contain-

ing Don anywhere in the value, along with an illegal search filter that

attempts to use multiple middle substring components
WHAT TO EVALUATE: SEARCH FILTERS 81

doesn’t work because LDAP substring filters do not use true wildcards the way file sys-
tem listings or regular expressions do.

A substring search can be performed by the an ldapsearch command like the
following:

> ldapsearch -b "dc=manning,dc=com" -s sub "(sn=Johns*)"

This command will return all entries with sn attribute values beginning with the
characters Johns. Such a search is called an initial substring search, because it looks for
the specified characters at the start of attribute values.

Substring searching can also be performed to match the middle and end of
attribute values, as the following two examples show:

> ldapsearch -b "dc=manning,dc=com" -s sub "(sn=*ohns*)"

> ldapsearch -b "dc=manning,dc=com" -s sub "(sn=*son)"

Finally, you can use a combination of these types of substring searches. The following
examples match first at the beginning and middle of the entry, then the beginning
and end, and finally the middle and end:

> ldapsearch -b "dc=manning,dc=com" -s sub "(sn=J*ns*)"

> ldapsearch -b "dc=manning,dc=com" -s sub "(sn=Jo*son)"

> ldapsearch -b "dc=manning,dc=com" -s sub "(sn=*oh*son)"

Figure 4.8 shows two examples. One is valid and shows a substring search that looks
for Do anywhere within the cn attribute and ley at the end; the other is invalid
because it contains multiple substrings in the middle.

As we stated earlier in this section, many people first exposed to LDAP look at the
asterisks (*) and assume that LDAP supports full wildcard matching like that avail-
able in most command shells and file-searching applications. Others incorrectly
assume that the asterisks imply support for regular expressions. Neither of these
assumptions is valid. LDAP’s support for substring searching is limited to the exact
types of filters documented in this section.

Substring searches are closer to creating and combining multiple search filters. For
example, the first filter in figure 4.8 is equivalent to a combination filter like
(&(cn=*Do*)(cn=*ley)) that uses ANDing of filters, as shown in the next section.

Figure 4.9 brings the initial, contains, and final substring components together for
a single search filter, and also shows that adding any other components to the filter
makes it invalid.

cn = *Do*ley

cn = *D*nl*y

Right:

Wrong:

Figure 4.8

An example that uses only contains (*Do*) and final (*ley) substring

matching along with another example of a bad filter that inserts too

many criteria
82 CHAPTER 4 SEARCH CRITERIA

One final note about substring matching is related to performance. Substring filters
are universally slower than exact and presence filters. However, substring searches that
include only initial or final substrings will typically perform better than substring
matches in the middle of a string.

4.3.4 Ordered matching (greater than/less than)

Greater- and less-than searches operate in much the same fashion as equality searches.
These searches are called ordering matches because they require the server to know the
order of the attribute value of the search filter relative to values for that attribute in all
entries in the directory.

Figure 4.10 expands a greater-than-or-equal-to search to show its components.
Notice that because the filter includes both equality and entries larger than the spec-
ified value, it returns the entry whose sn attribute is equal to Smith in addition to
entries with greater values.

The greater-than-or-equal-to search is designated by the >= identifier. All entries with
a particular attribute value that is greater than or equal to the one in the filter are
returned. Here is an example of using the ldapsearch command-line tool to per-
form such a search:

> ldapsearch -b "dc=manning,dc=com" -s sub "sn>=Johnson"

A value is determined to be greater than or equal to a particular value according to the
attribute’s syntax and matching rules. Chapter 2 goes over matching rules and syntax
in detail, and appendix A lists information about these characteristics for most stan-
dard attributes.

The reverse of a greater-than-or-equal-to filter is the less-than-or-equal-to filter.
This filter uses the <= operator and returns all entries with an attribute value that is
less than or equal to the value in the filter.

cn = C l a *Do*ley

cn = C l a *ton*Do*ley

Right:

Wrong:

Figure 4.9

An example of a substring filter using initial (Cla*), contains

(*Do*), and final (*ley) substring matching, along with a bad

filter that attempts to use too many wildcards

Example: sn>=Smith

sn >= Smith

Attribute is greater or
equal to

Specific Value

sn

Results
Contain

Anderson
Lee
Smith
Zimmerman

Figure 4.10 Greater-than-or-equal-to filters

return entries that contain attribute values

greater than or equal to the value specified

in the filter.
WHAT TO EVALUATE: SEARCH FILTERS 83

Figure 4.11 gives an example of using the less-than-or-equal-to filter to find entries
whose sn attribute is less than or equal to Smith.

Generally speaking, ordered searching is not used as frequently as some of the other
types of filters. This is the case because most LDAP-enabled applications use directories
for either security (which primarily requires exact searches) or white pages (which gen-
erally require both exact and substring searches).

4.3.5 Approximate filters

LDAP supports a type of filter for doing approximate matching. Approximate match-
ing is generally useful in white pages applications when a human attempts to search
for a name but is unsure of the exact spelling.

An example of an approximate search is

> ldapsearch –b "dc=manning,dc=com" –s sub "(sn~=Donnelley)"

This search tells the directory server to return entries that have an sn value that is
similar to Donnelley. The actual algorithm that the server uses to determine
whether a particular value is a match is entirely up to the server. Many servers sup-
port an algorithm like Soundex, but it is difficult for a developer to know in advance
what the server will return; so, you should generally restrict such searches to
instances where user input is being used to offer a user a list of potential matches to
choose from.

You can find more information about Soundex at http://www.bluepoof.com/
Soundex/info.html. Directory server documentation will generally describe the actual
algorithm used.

4.3.6 Multiple filters: AND and OR operators

You can easily combine multiple filters in LDAP to make more complex filters that
provide more precise results. One way filters can be combined is by using the AND
(&) operator, which returns an entry only if all the specified filters are true.
Figure 4.12 shows an example of two filters being tied together by this operator, and
the entries the resulting combined filter will match.

Example: sn<=Smith

sn <= Smith

Attribute Is less than
or equal to

Specific Value

sn
Results
Contain

Anderson
Lee
Smith
Zimmerman

Figure 4.11

An example less-than-or-equal-to filter

and the attributes it matches
84 CHAPTER 4 SEARCH CRITERIA

The number of filters that can be tied together by the AND operator is not limited to
two. In fact, many filters can be included to make the search more precise. For example:

(&(sn=Smith)(title=President)(cn=Jim*))

Note that you simply add additional filters within the set of parentheses that include
the AND operator.

In addition to the AND operator, LDAP can return entries under the condition that
any of the filters are true by using an OR (|) operator. Figure 4.13 shows an example
of two filters brought together by the OR operator and the results of a search using
that filter.

These complex filters can themselves be only a single part of an even more complex
search filter. Consider this example:

(&(|(objectClass=person)(objectClass=inetOrgPerson))(sn=Smith))

When the server reads this filter, it will return entries that contain either the per-
son or inetOrgPerson objectClass, but that also contain Smith in the
sn attribute.

Example: (&(sn=Smith)(title=President))

(& (sn=Smith) (Title=President))

AND
Operator

Filter Filter

Results
Contain

Entry
sn: Smith
cn: Sam Smith
objectclass: person
title: President

Entry
sn: Smith
cn: Jim Smith
objectclass: person
title: Engineer

Figure 4.12

Two LDAP search filters are

tied together using the AND

(&) operator.

Example: (|(sn=Smith)(title=President))

(| (sn=Smith) (Title=President))

OR
Operator

Filter Filter

Results
Contain

Entry
sn: Smith
cn: Sam Smith
objectclass: person
title: President

Entry
sn: Smith
cn: Jim Smith
objectclass: person
title: Engineer

Figure 4.13

Two LDAP search filters

brought together using the

OR (|) operator
WHAT TO EVALUATE: SEARCH FILTERS 85

4.3.7 Negative filters: the NOT operator

Sometimes you want to eliminate results that have values that you know will make a
particular entry undesirable. You can do this using NOT (!) operator to create a neg-
ative filter. Figure 4.14 shows the NOT operator in action.

Keep in mind that a negative filter is not the same as the != operation you may be
familiar with from various programming languages. Rather, the NOT operator indi-
cates that any entry that does not match a particular filter will be returned.

Thus if you are negating the sn=Smith filter as in figure 4.14, even entries that
do not contain the sn attribute will be included in the results. If you wanted to require
that the sn attribute also exist, you would create a complex filter using the AND oper-
ator discussed previously:

(&(sn=*)(!(sn=Smith)))

4.3.8 Extensible searching and matching rules

In chapter 2, we discussed the concept of matching rules. With extensible searching,
matching rules can be associated with a particular search operation.

Extensible searching using matching rules is one of LDAP’s more esoteric features
and is rarely used by most clients and applications. However, when used correctly, this
feature offers considerable power.

To understand how extensible searching works, it is first important to remember
what we discussed in section 2.3.3 related to matching rules. An extensible search filter
simply adds an explicit matching rule to the search filter, such as the following example:

(sn:1.2.3.4.5=Hartman)

This filter says to use the 1.2.3.4.5 matching rule to return entries where the sn
attribute equals Hartman. If the server defines the 1.2.3.4.5 matching rule to be case
sensitive, the entry with sn=Hartman will match, but sn=hartman will not.

Example: (!(sn=Smith))

(! (sn=Smith))

NOT
Operator

Filter

Results
Contain

sn
Anderson
Lee
Smith
Zimmerman

Figure 4.14 A NOT (!) filter returns

entries that do not match a particular filter.
86 CHAPTER 4 SEARCH CRITERIA

4.4 WHAT TO RETURN:
THE ATTRIBUTE RETURN LIST

The final part of a full set of LDAP search criteria is a list of attributes to return. If the
list is empty, all nonoperational attributes of the entry will be returned. Operational
attributes are typically those used by the server that should rarely be displayed to an
end user unfamiliar with their use. Such attributes can vary by directory vendor, but
they tend to include attributes involved in storing a server’s access control lists,
change time stamps, and other information. Attribute types in the return list that do
not exist, either in the server’s schema or as part of a returning entry, will be ignored
with no error messages or other exceptional behavior.

The distinguished name is always returned. If only the distinguished name is to be
returned, the LDAP client should pass an attribute that will not be returned in an
entry. One good attribute to use is dn, because there is no such attribute in any entry.
Many people make the mistake of thinking that because some LDAP clients return the
distinguished name in a way that looks like a value for an attribute called dn, this is
in fact an attribute. Not so.

What about removing the dn from search results? It isn’t possible to do so using
the attribute return list. Because, as we just mentioned, the distinguished name is not
an attribute, it will not be affected in any way by the attribute return list.

You might wonder why you’d want to remove any or all attribute values from a
returned entry in the first place. In a white pages context, there are few reasons to
remove all attributes.

However, many other applications use only a limited subset of an entry. For exam-
ple, an application using a directory for authentication may need only two attributes:
uid and userPassword. If the entry also contains a photo or other information,
it will be inefficient to simply have the server return an entire entry.

Similarly, an authorization application may already have the distinguished name of
an authenticated user and want to find the distinguished names of groups to which
the user belongs without necessarily returning the groups’ entire member lists. In this
case, you can pass a pseudo-attribute like dn to remove all attributes.

4.5 LDAP SEARCH CRITERIA VS. SQL QUERIES

Most developers who are familiar with databases have used SQL to create database
queries. Many similarities exist between the functionality of LDAP criteria and SQL
queries. For the benefit of readers who are familiar with SQL but not as familiar with
LDAP, this section looks at some of the similarities and differences.
LDAP SEARCH CRITERIA VS. SQL QUERIES 87

4.5.1 Similarities between SQL SELECT

and LDAP search criteria

First, let’s look at the similarities, beginning with a simple SQL SELECT statement:

SELECT firstname,lastname FROM table WHERE lastname='Johnson'

In this statement, firstname and lastname are the fields to be returned by the
query. The list of fields to return is similar to the use of an attribute return list in
LDAP, as mentioned in the previous section. Additionally, the WHERE clause includes
an expression that is similar to an LDAP exact equality search.

Ignoring pieces of the SELECT statement (such as table) that apply only in a
database environment, you can easily reconstruct this query as an LDAP search filter:

> ldapsearch –b "dc=manning,dc=com" "(sn=Johnson)" givenname sn

Note that you simply add a search base and use the LDAP-equivalent of lastname in
your search filter. You do a similar substitution in the list of attributes to be returned.

4.5.2 Differences between SQL SELECT

and LDAP search criteria

Getting beyond these basic, easy mappings, it is increasingly difficult to show similar-
ities, or even convert, between the type of search filter used in LDAP and an SQL
SELECT statement. As its simplest, expressions in the WHERE clause are very different
from LDAP search filters and are usually not one-to-one mappings. At a more funda-
mental, architectural level, the relational and LDAP information models do not map
easily to each other.

Fundamental differences include things such as a lack of RDBMS concepts such as
joins or even tables in LDAP, or the concept of LDAP hierarchy and object classes in
an RDBMS. For example, an SQL JOIN involves bringing information from multiple
tables into a single result. LDAP has no such concept, because LDAP information is
always pulled from an entry, and all clients have the same view of the data with excep-
tions for access control.

4.6 INCREASING SEARCH PERFORMANCE

Although it is beyond the scope of this book to describe exact techniques for increas-
ing performance in specific directory products, you can consider a number of general
areas when shooting for better search performance. The most common issue people
have when querying LDAP servers is that some search filters return results extremely
quickly, whereas other search filters take forever, time out, or hit resource limits on
the same server. These are almost always indexing issues. Virtually all LDAP servers
have settings that specify which attributes are indexed or hashed. Adding indices
increases disk usage and update time, but will likely be the only way that searches can
be completed in a timely manner on larger directories.
88 CHAPTER 4 SEARCH CRITERIA

Just because a server responds well to one type of search does not mean it will
respond similarly to other types of searches. Proper indexing will almost always give
better performance. For example, most directory servers allow an attribute to be
indexed separately for exact and substring searches. If only exact indexes are created,
a substring search will be unacceptably slow. Simply performing several searches on an
unindexed attribute may be enough to cause denial of service—intentionally or not.
Application developers absolutely must know what kind of searching the server is set
up to support.

You should minimize the number of times you open and close connections. Open-
ing and binding connections can be rather heavy, so opening a new connection for
each search is extremely inefficient.

One of the simplest way to improve performance is to request only those attributes
needed in the results. Doing so will reduce I/O and network traffic, especially on larger
result sets.

It is also a good idea to limit the scope of a search if possible. Doing so may have
little effect in normal operation but reduces the possibility that your client will need
to chase referrals or dereference aliases in parts of the directory tree that would not nor-
mally be pertinent to the query at hand.

A few directory servers index entries based on their location in the directory tree.
Such an indexing strategy may result in slower search performance during subtree
searches on deep directory trees. Most directory server products will suffer little or no
search performance degradation with deeper trees or wider search scopes.

4.7 SUMMARY

In this chapter, you learned that the base, scope, and filter are the primary criteria
used in an LDAP search. We went over the three possible LDAP scopes (base, one-
level, and subtree) and discussed how each of them affects the returned results. The
numerous examples of search filters we presented will be important throughout the
rest of the book as we begin using LDAP. Finally, we discussed important consider-
ations for getting optimal performance when you’re searching a directory.

In the next chapter, we will discuss how the information received from an LDAP
server can be represented and shared outside the directory using common formats such
as LDIF and DSML.
SUMMARY 89

C H A P T E R 5

Exchanging directory
information

5.1 Representing directory information

outside the directory 91
5.2 LDAP Data Interchange

Format 92
5.3 Directory Services Markup

Language 96

5.4 Defining directory schemas with
DSML 100

5.5 XSLT and DSML 102
5.6 Summary 104
It is often necessary to share or use directory information outside the directory server.
You can do so by writing that directory information to text files written to well-
known specifications. With LDAP-enabled directories, the specifications that tend to
be used are the following:

• LDIF

• DSML

This chapter introduces each of these interchange formats and answers the following
questions:

• How does data look when it’s formatted to each specification?

• What are the advantages and disadvantages of each? When should they be used?

• What kinds of data can be represented in each specification? What limita-
tions exist?

• How does DSMLv2 go beyond the interchange specification defined by
DSMLv1?
90

5.1 REPRESENTING DIRECTORY INFORMATION
OUTSIDE THE DIRECTORY
Directory information outside the directory

When retrieving information from a data repository, it is often desirable to store the
results of the retrieval for later use. In a relational database environment, this data
might be stored as an extract in a format like CSV, where each returned field is sepa-
rated by a comma or similar separator.

Directories that support LDAP have an information model that doesn’t lend itself
to rows and comma-separated fields. Instead, you use other extract formats that relate
better to the LDAP information model.

The first and most widely used of these formats is LDIF. Until this point in the
book, we have used this format without introducing it. We could do so because the
format is quite simple and intuitive on the surface, particularly with simple entries
that contain only textual information. The following is an example of an entry in
LDIF format:

dn: cn=Sam Smith,dc=manning,dc=com
cn: Sam Smith
sn: Smith
objectClass: person
objectClass: organizationalPerson

The other format is the DSML, which is used to represent directory information in
XML. Although this format tends to look more complex at first glance, the fact that it
is based on XML means that more and better application program interfaces are avail-
able to read and write these files. Additionally, DSML leverages XML, so it’s consider-
ably more extensible. In version 1 of the specification, entries and schema could be
represented. Version 2 extends the specification to represent actual directory protocol
operations. The following is the same entry that expressed previous in LDIF, this time
written in DSML:

<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">
 <dsml:directory-entries>
 <dsml:entry dn="cn=Sam Smith,dc=xyz,dc=com">
 <dsml:objectclass>
 <dsml:oc-value>person</dsml:oc-value>
 <dsml:oc-value>organizationalPerson</dsml:oc-value>
 </dsml:objectclass>
 <dsml:attr name="cn">
 <dsml:value>Sam Smith</dsml:value>
 </dsml:attr>
 <dsml:attr name="sn">
 <dsml:value>Smith</dsml:value>
 </dsml:attr>
 </dsml:entry>
 </dsml:directory-entries>
</dsml:dsml>
DIRECTORY INFORMATION OUTSIDE THE DIRECTORY 91

The DSML listing is longer and looks more complex, but the general flow of elements
and data should be familiar to most people who have used XML.

Throughout the rest of this chapter, we will explore these interchange formats in
more detail, as well as the advantages and disadvantages of each.

5.2 LDAP DATA INTERCHANGE FORMAT
LDAP Data Interchange Format

As you just saw, LDIF can be a simple way of representing directory information as
text. Nearly all directory servers support it for import and export, and most LDAP
APIs will read or write it as necessary. After several years as a de facto standard, LDIF is
now properly documented as RFC 2849 from the IETF.

In addition to representing full entries, LDIF can also be used to exchange entry
changes and even schemas, when combined with the textual representation of schemas
that we discussed in chapter 2.

LDIF is restricted to printable text. This means binary values must be encoded
using the Base64 standard. (Base64 is a standard that is commonly used in a wide vari-
ety of situations and is not specific to directory services.)

5.2.1 Expressing entries in basic LDIF

We walked through an LDIF sample earlier in the chapter. Let’s look at that entry
again and use it to better understand the LDIF format:

dn: cn=Sam Smith,dc=manning,dc=com

The first thing you’ll notice is that this first line, like all the others, can be broken in
two by a colon (:). In this line, the left side is dn and the right side is cn=Sam
Smith,dc=manning,dc=com.

In LDIF, the left side is usually an attribute type name. When you’re creating full
entries, lines like the previous one are the only exception, because they designate the
fully qualified distinguished name of the entry. This name is constructed per our pre-
vious discussions in chapter 3.

Once the entry has been named, you specify all of its attributes in much the same
way you specify its distinguished name. The left side of the colon is the attribute name,
and the right side contains a single value of that attribute:

cn: Sam Smith
sn: Smith

Multivalued attributes are expressed in multiple lines, with a single line representing
each value. The example entry contains a multivalued objectclass attribute,
which is represented in LDIF as

objectClass: person
objectClass: organizationalPerson
92 CHAPTER 5 EXCHANGING DIRECTORY INFORMATION

The five lines we’ve shown are enough to construct a full LDAP entry in LDIF that
could be added using a typical import utility, or even the command-line tool ldap-
modify that comes with most directory servers. The command line with ldap-
modify would be

> ldapmodify –D cn=admin –w manager –a
dn: cn=Sam Smith, dc=manning,dc=com
cn: Sam Smith
sn: Smith
objectclass: person
objectclass: organizationalperson

The entry could also be specified in a file rather than being fed as input to the program.

Wrapping long values

If the value is extremely long and will wrap to multiple lines, you simply insert a line-
feed and continue the value on another line. The following description attribute
demonstrates this technique:

description: This is a very long description that will
 take up multiple lines to display.

The description is the equivalent of a single attribute value in LDAP that does
not have the linefeed at the end of the first line.

Handling binary and other special attribute values

Binary values, such as photographs, digital certificates, and values that contain char-
acters outside printable ASCII, must be encoded using Base64 when used in LDIF. A
few other special cases exist that can also require attribute values to be encoded in
Base64 to prevent confusion.

Base64 is a popular, well-documented standard that is also used for, among other
things, encoding email attachments. In general, it uses 4 bytes for every 3 bytes of
binary information, which means the size of the encoded data will be larger than the
original data.

The postalAddress attribute in the next example shows a Base64-encoded
value:

postalAddress:: RWRnZWhhbSBIb2xsb3cNCldpbmNoZXN0ZXIgV2F5

Notice the two colons after the attribute name. The double colon is a special designa-
tion used to indicate that the value that follows is Base64 encoded.

In addition to characters that fall outside printable ASCII, values should be encoded
in Base64 if they begin with a space, colon, or less-than sign (<). Also be aware that
it is possible to mix plain text and Base64-encoded values in the same entry, or even
for a particular multivalued attribute.
LDAP DATA INTERCHANGE FORMAT 93

5.2.2 Writing LDAP changes as LDIF

As mentioned earlier in the chapter, LDIF can represent changes to LDAP entries in
addition to the entries themselves. This is done by using the changetype designa-
tor and providing information relevant to the type of change being performed.
Because adding an entry is considered a change, the simplest change that can be per-
formed is the add change type. The following example shows the previous LDIF
entry as an add change:

dn: cn=Sam Smith, dc=manning,dc=com
changetype: add
cn: Sam Smith
sn: Smith
objectclass: person
objectclass: organizationalperson

This entry can now be added using the ldapmodify command, assuming you place
the contents of the previous LDIF into a file called change.ldif:

> ldapmodify –D cn=admin –w manager <change.ldif

Notice that you do not use the -a option to indicate that you are adding entries.
Thus you can intermix add changes with other types of changes. One other type of
change you might use is the modify change. The next example shows how to add a
description attribute to the existing entry:

dn: cn=Sam Smith,dc=manning,dc=com
changetype: modify
add: description
description: This is a description

Once again, the first line indicates the distinguished name of the entry, and the sec-
ond line tells which type of change you are performing. The third line says you’re
adding a value to the description attribute. If a value already exists for the
description attribute, it will not be discarded when you add the new one, whose
value is on the final line.

To make multiple changes to the same entry, separate those change lines with a line
containing a single dash (-). The following shows a slightly more complex modify
change type example:

dn: cn=Sam Smith,dc=manning,dc=com
changetype: modify
delete: description
-
replace: postalAddress
postalAddress: 101 N. Maple St.
postalAddress: P.O. Box 141
-
add: l
l: Herscher
94 CHAPTER 5 EXCHANGING DIRECTORY INFORMATION

The first modification to the entry deletes the existing description values. You
then replace any existing postalAddress attribute values with the two specified
values. Finally, you add the l attribute with a value of Herscher.

If any one of these changes is invalid when decoded from LDIF and transmitted
to an LDAP server, the server will reject all the changes in that sequence of modifica-
tions. An example of an invalid change might be if postalAddress is not allowed
by the server’s schema, or if access controls do not permit one of the changes.

5.2.3 Representing schemas in LDIF

As we stated at the beginning of this chapter, it is possible to represent LDAP schemas
in LDIF. Although this is true, it is not as common as representing entries themselves
and is usually done only in the context of writing schema changes to a directory server.

In fact, no new operators are necessary in LDIF to add schema presentation capa-
bilities. Instead, you simply use a set of defined attribute types and the syntax defined
in IETF RFC 2252 (discussed in detail in chapter 2). What follows is an example of a
single object class as defined using this standard:

objectclasses: (2.5.6.6 NAME 'person' SUP top
 MUST (sn $ cn) MAY (userPassword $ telephoneNumber
 $ seeAlso $ description))

This example indicates that an object class called person is a subclass of the top
object class and must contain the sn and cn attributes, but may also contain user-
Password, telephoneNumber, seeAlso, and description attributes.

Notice that the attribute name is objectclasses, not objectClass. This
objectclasses attribute can be part of entries of the subschemaSubentry
object class. In addition to holding information about object class definitions, the
subschemaSubentry object class can hold other schema information, including
attribute types, syntaxes, and matching rules. The following lines show an attribute
type definition in LDIF:

attributetypes: (2.5.4.35 NAME 'userPassword' EQUALITY
 octetStringMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 USAGE userApplications)

This example defines the userPassword attribute as being of a particular syntax
and using the octetStringMatch matching rule.

If you were going to add a new attribute to a directory’s schema by running ldap-
modify or a similar command on a created LDIF file, the file might look like this:

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.2.3.4 NAME 'myAttribute'
 DESC 'My Little Attribute')

This example indicates that you are adding an attribute with the specified characteris-
tics to the schema.
LDAP DATA INTERCHANGE FORMAT 95

Holding schemas in LDIF is very useful when you’re creating and distributing
applications with custom schemas. It allows the new schema to be added to most direc-
tory servers in a relatively painless way without messing with the server’s configuration.

5.2.4 Advantages and disadvantages of LDIF

The clearest advantage of LDIF is that it is so simple to use and read. It also maps
closely to the information model used by LDAP. With its almost nonexistent learning
curve and built-in support with most directory servers and directory-aware products,
LDIF will likely remain popular for some time.

LDIF’s biggest disadvantage is that it is so closely tied to LDAP. In addition, noth-
ing that isn’t directory-aware will know how to use it. Thus most text editors will not
be able to do simple syntax checking, and most applications will have no existing
framework for using or validating these types of files.

We will now look more closely at DSML, which in many ways serves a similar pur-
pose to LDIF. As you will see, DSML serves this purpose in an entirely different way
that is more complicated, but more extensible and easier to use in environments not
geared toward directory services.

5.3 DIRECTORY SERVICES MARKUP LANGUAGE
Directory Services Markup Language

DSML is an XML vocabulary for representing directory information. Directory infor-
mation stored or transformed into DSML can be shared with other applications that
support DSML. You will create such applications in chapters 10 and 12.

5.3.1 Why use DSML?

Because it is based on XML, you can use DSML as a generic import/export format
for directory data. After all, directory information sometimes needs to flow beyond
the bounds of a network or outside a company. DSML can store both schemas and
data, making it much easier for these exported entries to be used outside their origi-
nal context.

Another reason to use DSML is that many new applications and application servers
are XML enabled. Thus they can use technologies such as XSL stylesheets to generate
dynamic content based on data published in XML without creating application logic
at the presentation layer. DSML also enables XML-based web services using standards
like SOAP to easily share directory information. Figure 5.1 shows how DSML can be
used as a format to encode information that comes from a directory prior to being pre-
sented to a DSML-enabled client.

LDAP
Directory

Application
Server

Client

HTTP LDAP Figure 5.1

DSML can be used to share

information between DSML-

aware applications without

exposing the LDAP protocol.
96 CHAPTER 5 EXCHANGING DIRECTORY INFORMATION

It is possible to create a DSML service that completely abstracts the use of LDAP
and data access from both the business logic and presentation layers in a typical e-busi-
ness application. Standards such as XSL Transformations (XSLT) provide the ability
for basic DSML documents to be transformed and injected into the flow of useful web-
based applications with minimal effort, as shown in figure 5.2.

As we mentioned earlier, one of LDIF’s big weaknesses is that few general-purpose
applications know how to deal with it. For example, figure 5.3 shows a Java develop-
ment tool with XML capabilities that is able to take advantage of the fact that DSML
is defined in XML and uses XML markup.

DirectoryDSML ServiceXML/XSLT Engine

DSML LDAP

Browser

HTTP

Figure 5.2 XSLT and DSML together may be used to build simple directory-cen-

tric applications with very little actual programming.

Figure 5.3 Many programs, such as this Java IDE, support XML editing and syntax checking

and can simplify the creation and management of DSML documents.
DIRECTORY SERVICES MARKUP LANGUAGE 97

This is one way in which DSML wins out over LDIF in generic directory informa-
tion interchange, in cases where the data may be used outside a directory context.
With full APIs for XML parsing and manipulation in nearly every modern program-
ming language, the handling of DSML documents will only become easier.

5.3.2 Getting started with DSML

Many LDAP-enabled directory servers do not support DSML out of the box. Thus it
is often necessary to use middleware to enable DSML access to LDAP information.
Additionally, services that support DSML typically support only DSMLv1, which does
not support the encoding of directory operations in XML, but which does offer the
ability to encode entries and schema information in XML.

DSMLv2, the next generation of DSML, has extended DSMLv1 to act as an inter-
change format not just for entries and schemas, but also for full directory operations.
The DSMLv2 standards are managed and published by the Organization for the
Advancement of Structured Information Standards (OASIS). The full draft of the
DSML standard, as well as information about adoption, can be found on the OASIS
DSML site: http://www.oasis-open.org/committees/dsml/.

This is not an introductory book on XML, but if you’re familiar with HTML, you
should be able to understand the general flow of a DSML document: it consists of
opening and closing elements and data in between. Elements may have XML attributes
associated with them that are included within the opening brackets. Let’s walk through
an example to help you understand the elements that make up a DSML document.

5.3.3 A DSML example

Listing 5.1 is an example of a DSML structured document containing a directory
entry for Janet Smith.

<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">
 <dsml:directory-entries>
 <dsml:entry dn="cn=Janet Smith,dc=xyz,dc=com">
 <dsml:objectclass>
 <dsml:oc-value>top</dsml:oc-value>
 <dsml:oc-value>person</dsml:oc-value>
 </dsml:objectclass>
 <dsml:attr name="cn">
 <dsml:value>Janet Smith</dsml:value>
 </dsml:attr>
 <dsml:attr name="sn">
 <dsml:value>Smith</dsml:value>
 </dsml:attr>
 </dsml:entry>
 </dsml:directory-entries>
</dsml:dsml>

Listing 5.1 janet.xml
98 CHAPTER 5 EXCHANGING DIRECTORY INFORMATION

In XML, everything starting in angle brackets (< and >) is called an element. Thus
<dsml:entry> and <dsml:directory-entries> are both elements.

Some elements have attributes. Do not confuse XML attributes with LDAP
attributes—XML attributes simply supply information about a particular element. In
the previous example, one element is <dsml:attr>, which is used to start an LDAP
attribute. One of the XML attributes of this element is called name and contains the
name of the LDAP attribute you will be representing.

Elements are usually ended by prefixing the element name with a slash. For exam-
ple, the tag </dsml:entry> indicates the end of the <dsml:entry> element that
began earlier in the file.

Elements are nested within other elements. Elements that come between the start
and end tags of an element are that element’s children. However, the following is illegal:

<dsml:dsml ...>
 <dsml:directory-entries>
 <dsml:entry ...>
 ... entry definition ...
 </dsml:entry>
 </dsml:dsml>
</dsml:directory-entries>

In this broken example, the dsml:directory-entries element is a child of the
dsml:dsml element. Children must be closed before their parents.

The <dsml:directory-entries> element indicates that you will be listing
directory entries between that element tag and the </dsml:directory-
entries> tag. Each individual entry begins with the <dsml:entry> element
tag, which has an XML attribute specifying the distinguished name of the entry
being defined.

Once inside the entry, things diverge a bit from LDIF. The entry’s object classes
are treated differently from its other attributes and isolated in the <dsml:object-
class> element and its child element <dsml:oc-value>. The earlier Janet Smith
example assigns the entry to the top and person object classes.

Finally, the attributes of each entry are listed in the <dsml:attr> element tag.
Each value of that attribute is listed between its <dsml:value> child element tags.
The Janet Smith example has only two non-objectClass attributes: cn and sn.

You can list multiple entries in the DSML file by creating more <dsml:entry>
structures under the <dsml:directory-entries> tag.

5.3.4 Handling binary values in DSML entries

Like LDIF, DSML is meant to contain only printable characters and is ill-suited for
direct display of binary blobs, such as images. When you’re storing such information,
you need to use Base64 encoding, just as you do in LDIF.

Incorrect!
DIRECTORY SERVICES MARKUP LANGUAGE 99

Unlike in LDIF, where you simply use double colons to indicate that the following
value is encoded, in DSML you set the encoding XML attribute in <dsml:value>
to indicate the type of encoding you have used for the specified value:

<dsml:attr name="cacertificate">
 <dsml:value encoding="base64">
 MIICJjCCAY+...
 </dsml:value>

</dsml:attr>

This example indicates that Base64 encoding was used on the specified value.

5.3.5 Entry changes and DSML

In LDIF, you store entry changes rather than full entries by specifying a change type
and associated information. DSMLv1 has no such capability and is restricted to stor-
ing full entries.

To an extent, DSMLv2 resolves this problem by allowing the representation of
entire directory operations, such as add, modify, and delete. In fact, DSMLv2 even
supports representing searches and controls. However, this functionality is not
roughly equivalent to LDIF in its simplicity or even its purpose. DSMLv2 is geared
toward web services in which DSML-encoded operations are transmitted between a
DSMLv2 client and a web service supporting DSMLv2; such web services either
directly provide information or act against an LDAP directory to provide information.
Therefore, they are not truly used as an interchange format for managing directory
information outside the directory.

We discuss DSMLv2 in this context in more detail in chapter 12.

5.4 DEFINING DIRECTORY SCHEMAS WITH DSML
Directory schemas with DSML

As we already mentioned, DSML not only represents entries, but also has elements for
defining directory schemas. This functionality is useful in that it allows a single docu-
ment to contain both directory entries and the schemas those entries use, making it
possible to recreate any unavailable schemas as desired. DSML can be used to store
schema information that includes object classes and attribute types.

5.4.1 DSML object classes

Here is an example of a DSML document containing the schema definition for the
person object class:

<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">
 <dsml:directory-schema>
 <dsml:class id="person" superior="#top" type="structural">
 <dsml:name>person</dsml:name>
 <dsml:description>Person as defined in RFC2256
 </dsml:description>
 <dsml:object-identifier>2.5.6.6</dsml:object-identifier>
 <dsml:attribute ref="#sn" required="true"/>
100 CHAPTER 5 EXCHANGING DIRECTORY INFORMATION

 <dsml:attribute ref="#cn" required="true"/>
 <dsml:attribute ref="#userPassword" required="false"/>
 <dsml:attribute ref="#telephoneNumber" required="false"/>
 <dsml:attribute ref="#seeAlso" required="false"/>
 <dsml:attribute ref="#description" required="false"/>
 </dsml:class>
 ... additional object class and attribute type definitions ...
 </dsml:directory-schema>

</dsml:dsml>

This is equivalent to the following definition in RFC 2256.

(2.5.6.6 NAME 'person' SUP top STRUCTURAL
 MUST (sn $ cn) MAY (userPassword $ telephoneNumber
 $ seeAlso $ description))

Notice how the DSML definition uses references to indicate where the definition for a
particular attribute type can be found. This is similar to the way HTML references
information within the same document.

Most of the tags are self explanatory, if you understand the components that make
up an object class (discussed in detail in chapter 2). The required flag separates the
attributes that must be part of the entries of that object class from the attributes that
are optional.

5.4.2 DSML attribute types

The definition of an attribute type being referenced might look like the following one
for telephoneNumber:

<dsml:attribute-type id="telephoneNumber">
 <dsml:name>telephoneNumber</dsml:name>
 <dsml:description>Telephone Number from RFC 2256
 </dsml:description>
 <dsml:object-identifier>2.5.4.20</dsml:object-identifier>
 <dsml:syntax bound="32">1.3.6.1.4.1.1466.115.121.1.50
 </dsml:syntax>
 <dsml:equality>telephoneNumberMatch</dsml:equality>
 <dsml:substring>telephoneNumberSubstringsMatch</dsml:substring>
</dsml:attribute-type>

This DSML attribute type definition would appear between the <dsml:direc-
tory-schema> start element and the </dsml:directory-schema> end ele-
ment. The telephoneNumber attribute type defined here is identical to that
defined using the form in RFC 2256:

(2.5.4.20 NAME 'telephoneNumber' EQUALITY telephoneNumberMatch
 SUBSTR telephoneNumberSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32})

Once again, all the elements map almost directly to the various attribute type compo-
nents we discussed in chapter 2.
DIRECTORY SCHEMAS WITH DSML 101

5.5 XSLT AND DSML
XSLT and DSML

XSL is a stylesheet language for XML. XSLT vocabulary is used by XSL to transform
one XML document into another.

Because DSML is simply an XML document type, XSLT can be used to transform
DSML documents into other formats that are more useful to a particular application
(see figure 5.4).

One example would be a simple white pages application that consisted entirely of a
stylesheet that translated search results into HTML. Other examples would be transla-
tion from DSML into specialized XML document styles that have been devised for
different vertical industry segments.

5.5.1 Converting DSML to HTML using XSLT

One such format into which you can translate a DSML document is HTML, which is
natively viewable by any web browser. A stylesheet that creates HTML output from
DSML is shown in listing 5.2. Even if you aren’t familiar with XSLT, you can scan the
stylesheet and see that it basically lists HTML tags around DSML elements. The
DSML entry is transformed into a heading, and the attribute types and values are
placed into an HTML table.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <head>
 <title>Results</title>
 </head>
 <body>
 <h1>Results</h1>
 <xsl:for-each select=
 "dsml:dsml/dsml:directory-entries/dsml:entry">
 <h4>
 <xsl:value-of select="@dn"/>
 </h4>

HTML

XML

XSL

DSML

XSLT

Figure 5.4

XSLT can use an XSL stylesheet to

transform a DSML document into

other formats.

Listing 5.2 simple.xsl
102 CHAPTER 5 EXCHANGING DIRECTORY INFORMATION

 <table border="1">
 <xsl:for-each select="dsml:attr">
 <tr>
 <th>
 <xsl:value-of select="@name"/>
 </th>
 <xsl:for-each select="dsml:value">
 <td>

 <xsl:value-of select="."/>
 </td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

This stylesheet could be used to transform the janet.xml file (listing 5.1) into the
HTML file shown in listing 5.3. Examples of doing this in both Perl and Java can be
found in chapters 10 and 12.

<html>
 <head>
 <title>Results</title>
 </head>
 <body>
 <h1>Results</h1>
 <h4>cn=Janet Smith,dc=xyz,dc=com</h4>
 <table border="1">
 <tr>
 <th>cn</th>
 <td>Janet Smith</td>
 </tr>
 <tr>
 <th>sn</th>
 <td>Smith</td>
 </tr>
 </table>
 </body>
</html>

XSLT is not limited to generating HTML. You could easily write a different stylesheet
that transforms the janet.xml file into another type of document. Doing so would not

Listing 5.3 janet.html
XSLT AND DSML 103

require you to change the janet.xml file in any way. In fact, this separation between
data and presentation is part of what makes XML so attractive when sharing informa-
tion of this nature.

5.6 SUMMARY
Summary

DSML is an important new standard that can be used to represent directory informa-
tion from an LDAP-enabled directory in XML in such a way that it can be exchanged
and transformed without disrupting the data involved. DSML compares favorably to
LDIF in its ability to store schema as well as entry information. Additionally, with the
growing popularity of XML APIs such as SAX (Simple API for XML) and DOM (Doc-
ument Object Model), DSML offers the ability to access directory information to pro-
grammers and applications that are not as well versed in directory technology.

In the next chapter, we move from discussing LDAP and directory concepts to
learning about one of the APIs that enables you to begin putting theory into practice
in Perl.
104 CHAPTER 5 EXCHANGING DIRECTORY INFORMATION

2
P A R T
LDAP management
Information that exists in directories must be managed, as must the server itself. This
part of the book examines techniques that you can use to manage directories effec-
tively with LDAP.

The examples in this part of the book use Perl and the Net::LDAP module.
Chapter 6 walks through using the module to communicate effectively with an LDAP-
enabled directory service.

Chapter 7 explores ways to manage the information in an LDAP-enabled directory.
Examples are included in Perl for managing users, groups, and other types of entries.

In many cases, the information in an LDAP-enabled directory originates in another
data store, or must be provided to another data store. Chapter 8 introduces synchro-
nization and migration techniques, with examples in Perl.

Chapter 9 looks at how you can use LDAP to access monitoring and configura-
tion information in many directory services. Doing so will let you better manage ser-
vice availability.

Finally, chapter 10 builds on your knowledge of DSML from chapter 5 to include
using the standard as a data interchange format that can simplify interactions between
a directory service and other services with which it must interact.

C H A P T E R 6

Accessing LDAP
directories with Perl

6.1 LDAP access from Perl 108
6.2 Getting started with

Net::LDAP 109
6.3 Searching with Net::LDAP 111
6.4 Manipulating entries 116

6.5 Comparing entries 118
6.6 Handling errors 119
6.7 Support for encrypted/SSL

connections 119
6.8 Summary 120
This chapter introduces the Net::LDAP module for Perl, which we will use through-
out the book in our programming examples. We selected Perl as the primary lan-
guage for examples in this part for two reasons. First, a huge number of people are
familiar with Perl—especially the type of people who manage and implement direc-
tories. And second, Perl is highly regarded as a glue language that can be used easily
to bring together different types of information. The flow of Perl code is relatively
human readable and similar in syntax to many other popular programming lan-
guages, thus allowing a wide variety of readers to understand this book without nec-
essarily being coders.

By the end of this chapter, we will have answered the following questions:

• What modules exist for accessing LDAP from Perl? How are they different?

• How can Net::LDAP be used to connect and authenticate to an LDAP-enabled
directory server?
107

• How can Net::LDAP be used to search, compare, and manipulate directory
entries?

• How can LDAP errors and exceptional conditions be handled with the
Net::LDAP module?

6.1 LDAP ACCESS FROM PERL

When this book was first drafted, it used something called PerLDAP to allow Perl to
access LDAP. PerLDAP was initially released in August 1998 as part of Netscape’s
Mozilla open source effort. It was developed by Leif Hedstrom from Netscape and
this book’s author as a consolidation of two earlier Perl modules for accessing LDAP.

PerLDAP is divided into two parts:

• An object-oriented programming interface written completely in Perl

• A back-end interface to a standard API written for C language developers (Perl XS)

Figure 6.1 shows PerLDAP’s general architecture.

We will not, however, be using PerLDAP in this chapter. Instead, we will use a differ-
ent module called Net::LDAP that was developed by a prolific Perl developer named
Graham Barr.

Unlike PerLDAP, the Net::LDAP module does not require the module to be com-
piled using a C compiler on different servers, making it much easier to install on sys-
tems without freely available bundled compilers, such as Windows. Mr. Barr has
implemented an entire ASN.1 module that is used to encode and decode the appro-
priate LDAP messages as necessary directly in Perl. Doing this has also simplified the
use of controls and other LDAPv3 features that were not easily available from the
PerLDAP module.

Why did we look at the architecture of the PerLDAP module if we will not be
using it? Simply because it is available for download in many places, and it is impor-
tant to understand the advantages and disadvantages of using it versus the
Net::LDAP module. Because PerLDAP is quite popular and many existing scripts and
tools use it, appendix B shows several of the examples from part 2 of this book
rewritten using PerLDAP.

Connection Entry Utilities LDIF

C<->Perl Integration Layer (Perl XS)

LDAP C SDK

Figure 6.1

The PerLDAP module consists of both

object-oriented Perl and a C<->Perl

integration layer.
108 CHAPTER 6 ACCESSING LDAP DIRECTORIES WITH PERL

6.2 GETTING STARTED WITH NET::LDAP

Now that we have discussed the Net::LDAP module and how it differs from PerLDAP,
let’s begin exploring how you can use Net::LDAP to access LDAP-enabled directory
services. We’ll start by setting up the environment and connection.

6.2.1 Using the module

To utilize the functionality provided by Net::LDAP—or any Perl module, for that
matter—you must first list the modules you will be using. You do so with the
use command:

use Net::LDAP;

This line is all that’s necessary to begin accessing LDAP directories from Perl. If this
line does not work when run independently, the Net::LDAP module is most likely
not installed. (The “Getting Started” section at the beginning of this book describes
how to obtain the module.)

6.2.2 Opening a connection

Perl scripts cannot communicate with an LDAP server until a connection is opened.
You open a connection to the LDAP server by creating a new Perl object of the
Net::LDAP class. Here is an example that opens a connection to the LDAP server on
the local machine:

my $conn = new Net::LDAP("localhost");

This example attempts to access the directory server running on port 389 on the local
host. If the connection is unsuccessful, the $conn variable will be undefined. You
can detect this situation easily with the next few lines:

if (!$conn)
{
 print "Error Opening Connection!";
}

In addition to the host name, you can specify a port. Doing so is important if the
LDAP server you are using does not listen to the default port (389):

my $conn = new Net::LDAP("localhost",port=>10389);

You may remember that LDAP is an asynchronous protocol, but the Net::LDAP
class supports only synchronous operations. In Perl this normally isn’t an issue, partic-
ularly for the types of scripts you will be putting together in this part of the book.
Writing an application where blocking on a search or modify operation would be a
problem (such as an interactive program with a GUI) makes support for asynchro-
nous operations more important.
GETTING STARTED WITH NET::LDAP 109

6.2.3 Binding to the directory

LDAP allows a connection to be bound as an entry within the directory; operations are
then performed as this entry. For example, if an entry named uid=admin,dc=man-
ning,dc=com exists with a password, binding as that entry with a correct password
allows you to use that entry’s identity when performing the operations that follow.
Binding is useful because it allows the server to know who is doing a search or modify
operation, which in turn offers the potential for granular authorization.

By default, Net::LDAP either does not bind to the directory or binds anonymously,
depending on the version of the LDAP protocol being used. Either way, the server
regards the initial state of the connection as being bound anonymously. You can
authenticate to the server by passing a login and password to the bind() method on
your returned Net::LDAP object. For example:

$conn->bind(dn => "cn=Admin", password => "abc123");

The result is interesting when you bind with an entry name without specifying a
password:

$conn->bind(dn => "cn=Admin", password => "");

It gives you a connection without requiring a password. This invalidates the use of
LDAP as a secure data store, right?

Not exactly. This result is called a reference bind, and the connection is still bound
anonymously. Using reference binds, an application that uses the directory anony-
mously can give the server an idea of who is accessing it.

To see where this approach might be useful, let’s say you have a monitor program
that checks an entry in the server every minute. You might bind as cn=monitor
without a password so that the server can log the fact that the monitor program is
accessing it.

However, in most cases, a reference bind is useless. It is usually only important to
remember that it exists when you’re using LDAP to validate passwords in an applica-
tion, in which case you should discard attempts to bind without passwords.

Some applications need to switch credentials on an existing connection. This
requirement is common in cases where a login needs to be performed as a userid rather
than as a distinguished name. The bind operation can be used multiple times in a sin-
gle LDAP session. Binds that occur after the initial bind will make the server forget the
connection’s previous credentials.

The bind operation always takes the distinguished name. So, because users tend to
use and remember a username like janderson much more easily than a distin-
guished name like uid=janderson, ou=Authors, dc=manning,dc=com,
you need to go through extra steps to let a user bind using the information they know.

You can use a code segment like that in listing 6.1 to let users log in using a given
username and password, rather than directly with a distinguished name.
110 CHAPTER 6 ACCESSING LDAP DIRECTORIES WITH PERL

use Net::LDAP;

$username = "janderson";
$password = "password";

$conn = new Net::LDAP("localhost",port=>389);
$mesg = $conn->search(base=>"dc=domain,dc=com",scope=>"sub",
 filter=>"(uid=" + $username + ")");
$entry = $mesg->entry(0);

if ($entry) {
 if ($conn->bind(dn=>$entry->getDN(),password=>$password)) {
 print "Authentication Successful!\n";
 } else {
 print "Authentication Failed!\n";
 }
}

Listing 6.1 first opens an anonymous connection to the LDAP server—in this case,
one running on the current machine. It then performs a search for entries with a uid
attribute that matches the $username variable, which in this listing is hard-coded
to janderson. The first entry returned is placed in the $entry variable if it exists.

If the $entry value does not contain a value, you do not do anything further.
However, if an entry is returned, you extract the distinguished name from it and use
that along with the password listed in the $password variable to rebind to the server
with the credentials of that returned entry.

6.3 SEARCHING WITH NET::LDAP

Now that you’ve opened your connection and perhaps even authenticated yourself to
the LDAP server, the next logical step is to do something. Searching is the most com-
mon LDAP operation. It is also the most complex, so it is a good one for us to get out
of the way early with some examples. Chapter 4 discusses much of the complexity
associated with searching; you can refer to it to better understand elements such as
search filters that you will use in this section’s examples.

6.3.1 Performing a search

Assuming you already have a connection to the directory, you simply use the
search() method on your previously established connection object:

$mesg = $conn->search(base=>"dc=domain,dc=com", scope=>"sub",
 filter=>"(objectClass=*)");

This code makes a request to the server to return all the entries under the
dc=domain,dc=com portion of the directory tree. The part of the tree you are

Listing 6.1 username_bind.pl
SEARCHING WITH NET::LDAP 111

searching (the search base) is the first argument to the search() method, followed
by the scope and a standard LDAP search filter string.

The search returns an object that contains the LDAP message returned by the
server. Once the search completes, you can print each returned entry in LDIF format
quite easily with the following code:

$ldif = new Net::LDAP::LDIF("-","w");

for ($i = 0; $i < $mesg->count; $i++) {
 my $entry = $mesg->entry($i);
 $ldif->write_entry($entry);
}

The code creates a new Net::LDAP::LDIF object that will be used to write entries
in LDIF format. You then cycle through each of the returned entries and write them
out. Although you could access each entry object manually and print the contents,
the Net::LDAP::LDIF object does more than just print basic attributes: it handles
the encoding of binary attributes into printable characters using the Base64 standard.

Listing 6.2 shows the complete simple_search program.

use Net::LDAP;
use Net::LDAP::LDIF;

my $conn = new Net::LDAP("localhost");

$mesg = $conn->search(base=>"dc=domain,dc=com", scope=>"sub",
 filter=>"(objectClass=*)");

$ldif = new Net::LDAP::LDIF("-","w");

for ($i = 0; $i < $mesg->count; $i++) {
 my $entry = $mesg->entry($i);
 $ldif->write_entry($entry);
}

$ldif->done;

$conn->unbind;

When run, the simple_search program gives you output that looks something
like the following:

dn: uid=ssmith,dc=domain,dc=com
objectClass: inetOrgPerson
cn: Sam Smith
sn: Smith
uid: ssmith

Listing 6.2 simple_search.pl
112 CHAPTER 6 ACCESSING LDAP DIRECTORIES WITH PERL

To change this program so it returns only the attributes in which you are interested,
you can add an argument to the search() method. This argument is an array refer-
ence containing a list of attributes to be returned:

$entry = $conn->search(base=>"dc=domain,dc=com", base=> "sub",
 filter=>"objectClass=*", attrs=>["cn"]);

Changing the simple_search program to use this search results in the program
returning the cn attribute but not other attributes, such as sn:

dn: uid=ssmith,dc=domain,dc=com
cn: Sam Smith

Notice that the distinguished name is still returned; the distinguished name is not an
attribute and is always returned as part of a matching search result.

6.3.2 Understanding search scopes

We discussed search scopes in chapter 4. Here we will look at how these scopes can be
applied to search operations in the Net::LDAP module.

As in LDAP, three search scopes are available for use with Net::LDAP:

• Base

• One-level

• Subtree

Base scope

Using the base scope tells the server to apply the rest of your search criteria only
against the entry given as the base for the search. As shown in figure 6.2, you can
return only a single entry with such a search.

In figure 6.2, a search for Sam Smith’s record will never return results, because that
record is not evaluated as part of the search. However, a search for an entry with any
objectClass value will return the dc=domain,dc=com entry.

In Net::LDAP, you can use a base scope by passing the string "base" as the second
argument to a search() request:

$mesg = $conn->search(base=>"dc=domain,dc=com",scope=>"base",
 filter=>"objectClass=*");

dc=software dc=hardware

cn=Sam Smith cn=Jan Brown

dc=domain,dc=com

Figure 6.2

The base scope evaluates

only a single entry.
SEARCHING WITH NET::LDAP 113

One-level scope

The one-level scope allows you to search only those entries directly below the base
you specified for the current search. It will not return the entry located at the search
base. A search on the presence of the objectClass attribute will list all of the
search base’s immediate children.

Figure 6.3 shows the entries that are evaluated by a one-level search where the
search base is dc=domain,dc=com.

You can tell Net::LDAP to request a one-level scope by using "one" as the second
argument to the search() method:

$entry = $conn->search(base=>"dc=domain,dc=com",
 scope=>"one", filter=>"objectClass=*");

Subtree scope

Rather than return only the immediate children of the search base, the subtree scope
returns all descendants matching the given filter. Searching for the presence of
objectClass returns all entries below the search base.

Figure 6.4 shows the entries that are evaluated by a subtree search from the top of
the directory tree.

A subtree scope in Net::LDAP is designated by the string "sub" in the second
argument to the search() method:

$mesg = $conn->search(base=>"dc=domain,dc=com",
 scope=>"sub", filter=>"objectClass=*");

dc=domain,dc=com

cn=Sam Smith cn=Jan Brown

dc=software dc=hardware
Figure 6.3

The one-level scope includes

only those entries below the

search base.

dc=domain,dc=com

dc=software dc=hardware

cn=Sam Smith cn=Jan Brown

Figure 6.4

The subtree scope

returns the base

entry and all of its

descendents.
114 CHAPTER 6 ACCESSING LDAP DIRECTORIES WITH PERL

6.3.3 LDAP search filters

We touched on search filters in our previous examples, primarily by testing for the
presence of the objectClass attribute. By doing so, you instruct the server to
return all entries covered by the scope of the search.

Although many of the search filters in this book’s examples are relatively straight-
forward, search filters can be complex. Detailed information about how to read and
construct LDAP search filters can be found in chapter 4.

6.3.4 Using search results

The simple_search example shown earlier isn’t much more useful than the
ldapsearch tool that comes with most LDAP server distributions. You begin to see
real value when you use Perl to act on the results of an LDAP query.

You do so by acting on Perl objects of the Net::LDAP::Entry type that you
can extract from the search results. Acting directly on those objects, you can do some-
thing simple to retrieve a particular attribute’s values:

@cn_values = $entry->get_value("cn");

This line puts the values of the cn attribute into the @cn_values array. Because
LDAP attributes can contain multiple values, @cn_value can contain multiple values.

You can extract individual values from this array by using Perl array operators:

$onevalue = $cn_values[0];

You can also read only the first value by placing the results of get_value into a sca-
lar instead of an array, as shown here:

$onevalue = $entry->get_value("cn");

6.3.5 Limiting attribute retrieval

Entries can contain any number of attributes. However, simply because the attribute
exists doesn’t mean you want to retrieve it.

For example, there is little use in retrieving a telephone number if you are building
an application to programmatically route email. In this instance, you can expand your
search command with a few additional arguments:

$mesg = $conn->search(base=>"dc=domain,dc=com", scope=>"sub",
 filter=>"objectClass=person",attrs=>["mail"]);

The attrs argument to the search() method limits the returned attributes to
those specified in the array reference following it. Using this new argument, the previ-
ous search will return only the mail attribute.

The entry object returned by the following search will contain only mail, cn, and
sn attributes, in addition to the entry’s distinguished name:

$mesg = $conn->search(base=>"dc=domain,dc=com", scope=>"sub",
 filter=>"objectClass=person",
 attrs=>["mail","cn","sn"]);
SEARCHING WITH NET::LDAP 115

As shown in both examples, there is no need to return attributes used in the
search filter.

In some cases, the value of the attribute isn’t important. In those situations, you
can prevent attribute values from being returned by the server. When set to true, the
argument typesonly notifies the server that it should return only the names of
attributes and not their values:

$mesg = $conn-search(base=>"dc=domain,dc=com",scope=>"sub",
 filter=>"objectClass=person",typesonly=>true);

The entry object returned from this search will produce LDIF output in the same vein
as the following:

dn: uid=sjones, dc=domain, dc=com
cn:
sn:

6.3.6 Handling referrals

A server that doesn’t contain part of the tree referenced by the search request may
refer the client to a server that does contain the information needed. It is up to the
client to handle these referrals and redirect its query to the right server.

Net::LDAP greatly simplifies this process. Unfortunately, it offers no way to
retrieve the value of these referrals without following them. In normal use, this is not
an issue; but in some types of monitoring applications, this limitation opens the
potential for your request to be sent a server other than the one to which you had orig-
inally connected.

6.4 MANIPULATING ENTRIES

We’ve focused up to now on retrieving information from the directory. Let’s begin to
look at the process for manipulating directory entries. Note that prior to making
changes to the directory, you will virtually always need to bind as a directory user
with adequate power.

6.4.1 Updating an entry

Updating an entry in Net::LDAP is extremely easy, because the Net::LDAP::
Entry class is designed to record change activity. Before updating, you need to
retrieve the entry that you plan to change. You do so with a simple search operation:

$mesg = $conn->search(base=>"dc=domain,dc=com",scope=>"sub",
 filter=>"(uid=cdonley)");
$entry = $mesg->entry(0);

You can now perform an add, replace, or delete for any attribute type. Here are a few
examples:

$entry->add("telephonenumber","+1-847-555-1212");
$entry->add("facsimileTelephoneNumber",["+1-815-555-1212",
 "+1-847-555-1213"]);
116 CHAPTER 6 ACCESSING LDAP DIRECTORIES WITH PERL

$entry->replace("pager","+1-212-555-1212");
$entry->delete("manager");

The first line adds a single value to the telephonenumber attribute. The next line
adds the facsimileTelephoneNumber attribute with the values within the
brackets. The third line replaces the value of the pager attribute with the one speci-
fied. The final line removes all the values for the manager attribute.

Once you have finished making changes to the entry, you simply tell the entry to
update using a particular open connection that is authenticated appropriately:

$entry->update($conn);

6.4.2 Adding new entries

Adding a new entry is similar to updating an existing entry, with the exception that
new entries must first be created and assigned a distinguished name before they can
be persisted:

$entry = new Net::LDAP::Entry();
$entry->dn("uid=jsmith, dc=domain, dc=com");

Now you can use the same four ways of manipulating the entry object that you used
earlier when updating existing entries.

When you finish setting all the necessary attributes in your new entry, you simply
pass it to the add() method:

$conn->add($entry);

6.4.3 Deleting an entry

Deleting an entry is probably the simplest operation you can perform with
Net::LDAP. Here is an example of how incredibly easy it is:

$conn->delete("uid=edonley,dc=domain,dc=com");

That’s it. No confirmation or other protections—so be certain you really want to per-
form this operation before you do it.

You can’t change more than one entry at a time using a single delete operation.
Thus you cannot do something like the following if child entries exist:

$conn->delete("dc=domain,dc=com");

You need to delete the entries below the dc=domain,dc=com entry before you can
delete it.

6.4.4 Renaming an entry

The rename operation is a relatively recent addition to the LDAP protocol. Virtually
all LDAPv3-compatible servers support renaming entries that have no children. Many
servers do not support renaming of entire subtrees.

You might wonder why renaming is so difficult with LDAP. Consider for a
moment what needs to happen if you rename an organization or other type of entry
MANIPULATING ENTRIES 117

that typically has descendants. All of those descendants need to be renamed to reflect
the new name of their parent. What if that organization has 100,000 entries?

Even when you’re changing a single entry’s RDN, it is important to remember that
changing the distinguished name this way may require you to update any groups or
other types of entries that have references to this entry.

Some directory servers include relational integrity plug-ins that you can use to
automatically update groups and other objects in the directory when a referenced entry
is deleted or renamed. The LDAP protocol makes no guarantees about relational integ-
rity; thus if an application needs to work across multiple directory platforms, you can’t
rely on this functionality.

Net::LDAP supports modification of distinguished names through the moddn()
method on the Net::LDAP class. The following line allows you to change a userid from
ljensen to lsmith in the RDN:

$conn->moddn("cn=ljensen,dc=domain,dc=com",
 newrdn=>"uid=lsmith");

As mentioned in chapter 3, designing namespaces with unique identifiers rather than
more change-prone attributes will reduce the need for this type of functionality.

6.5 COMPARING ENTRIES

It is possible to compare a specific directory entry with given criteria using the
Net::LDAP module. This functionality is made possible by the compare() method
on the connection class:

if ($conn->compare("uid=lfranklin,dc=domain,dc=com",
 attr=>"sn", value=>"Franklin"))
{
 print "The last name of this entry is Franklin!\n";
}

This example isn’t terribly practical. However, the compare operation in general isn’t
terribly practical, because you often need to do a search for an entry just to find the
distinguished name—few people know the distinguished name of the entry they
want to compare.

Distinguished names are often meaningless in relation to the human-readable iden-
tity of an entry. Although we have been using the common name and a human-
readable userid in the distinguished name for many of the examples in this chapter,
you probably would not do so in a real directory. Thus the only reliable way to find
the distinguished name of an entry is to search for it using a known identifier, such
as a userid or name. Because you would have already performed a search, you would
likely have simply returned the sn attribute as part of the result set and done a com-
parison using programming logic rather than perform another LDAP operation.

The compare operation is useful when permission is not given to read a particular
attribute from an entry but the entity accessing the directory is allowed to compare
118 CHAPTER 6 ACCESSING LDAP DIRECTORIES WITH PERL

that attribute. For example, this technique was often used in ancient times with the
userPassword attribute. The attribute was usually restricted, but certain users were
often given access to compare a string to the password stored in an entry in the direc-
tory. A successful comparison indicated a correct password. This practice is now rel-
atively defunct, because passwords are rarely, if ever, stored in plain text on the
directory server unless the intent is to further protect the password over the wire
through advanced authentication mechanisms. We’ll explore alternative ways to do
this when we discuss security in chapter 13.

6.6 HANDLING ERRORS

Exceptional conditions happen for various reasons when working with Net::LDAP.
Perhaps you tried to bind as a nonexistent user or supplied the wrong password. In a
search, the search base may not have existed. When making a change, the connection
may not have been bound as an appropriate user.

When any of these types of situations happen, the operation you performed will
fail. You can test for such a failure by checking to see whether the code variable is
defined on the returned LDAP message object:

if ($mesg->code())
{
 print "An Error Occurred: Error #" . $mesg->code . "\n";
}

In real life, you’ll probably want to print a meaningful error message rather than a
cryptic error number. You can do so by retrieving the error variable from the
returned LDAP message:

$errorString = $mesg->error();
print "Error: " . $errorString . "\n";

6.7 SUPPORT FOR ENCRYPTED/SSL
CONNECTIONS

Although most LDAP servers encrypt user passwords on disk, servers and APIs have
only recently begun to support encrypted transmission of passwords. Without net-
work encryption, the directory is only as secure as the network link between client
and server. For a small switched intranet, this level of security might be sufficient.
Unfortunately, this is not the case when you’re sending sensitive passwords and other
data over the Internet. To get around this issue, some servers allow for the encryption
of the entire session, rather than just the password, using the Secure Sockets Layer
(SSL); but SSL has never been part of the LDAP standard.

With LDAPv3, the SASL has been added to the standard. This standard was orig-
inally devised by the developers of the IMAP as a way of allowing the client and
server to negotiate the way passwords and data are transmitted. It serves the same
purpose in LDAP.
SUPPORT FOR ENCRYPTED/SSL CONNECTIONS 119

If you have used VeriSign or another CA to generate a client certificate for your
web browser, it is possible to export that certificate in such a format that it can be used
by Net::LDAP to open an encrypted connection to an LDAP server supporting SSL.

6.8 SUMMARY

In this chapter, we discussed the performance of every major LDAP operation using
the popular Net::LDAP module. We reviewed in detail the way that the search criteria
discussed in chapter 4 directly impact the search results obtained using this module.
We covered important limitations when renaming and deleting entries, and provided
more information about best practices for naming directory entries.

The next chapter explores using the technology we discussed in this chapter to
effectively manage the content of a directory server with Perl.
120 CHAPTER 6 ACCESSING LDAP DIRECTORIES WITH PERL

C H A P T E R 7

Managing directory
entries, groups,
and accounts

7.1 Common types of managed

entries 122
7.2 Entry management models 122
7.3 Creating people entries 126
7.4 Creating and maintaining

groups 134

7.5 Representing and managing
account information 136

7.6 Managing other information 142
7.7 Summary 143
It is common for a directory to be deployed without much consideration for ongoing
management. Such oversight tends to lead to isolated directories that are difficult to
manage over time and not properly integrated into related business processes.

In this chapter, we will explore a few models for managing directory entries and
create some new tools that simplify this process. By the end of this chapter, we will
have answered the following questions:

• What are the most common models for managing information in directories?

• How do you build a simple web-based tool for adding users to a directory?
What if that tool needs to work with data from existing sources?

• How can groups be managed in the directory? What about account information?

• What issues are involved when you’re managing directory entries that refer to
objects other than people and groups?
121

7.1 COMMON TYPES OF MANAGED ENTRIES

Before we go deeper into managing information in an LDAP server, let’s take another
look at what you are actually managing. We’ve discussed the concept of entries
throughout the book and noted how they are made up of attributes. It’s important to
realize that an entry can be anything. Prior to this chapter, we didn’t need to distin-
guish between various types of data being stored in the directory. However, as you
manage this information, you must look at the characteristics of different types of
information that are typically managed in a directory.

The most common type of information stored in a directory pertains to people and
accounts. As in real life, people are unique entities; therefore each person typically has
a single entry within a directory that describes various characteristics about them.

Accounts are different: a single person may have multiple accounts, and a single
account may be associated with multiple people. This difference is key when you’re
managing accounts, because you must manage not only accounts but also the associ-
ation between those accounts and an account owner. For example, in a perfect world,
it would be nice to disable all the accounts associated with a terminated employee.

Groups and roles tend to be associated with other entries (often people or accounts)
to allow applications to treat the associated entries in a similar manner. For example,
you might want a group entry that contains a list of all the people who should get a
certain type of email or have access to a particular application.

Other types of entries exist as well, and you can make new types by creating custom
object classes and attributes. The key thing to remember when reading this chapter is
that many entry management techniques apply to all types of entries. However, when
we discuss managing specific types of information, such as user accounts, the tech-
niques used may not be as applicable to other types of information.

7.2 ENTRY MANAGEMENT MODELS

There are three primary models for entry management:

• Centralized administration

• Distributed administration

• User self-administration

In general, there is no right or wrong model to use. However, the model you choose
should reflect the type of entries being managed, the ratio of administrators to
entries, and the nature of the applications using the directory information.

7.2.1 Centralized administration

Centralized administration is the easiest to develop and deploy quickly, especially in
organizations with minimal directory management needs. In this model, a central
group receives and processes add, modify, and remove requests each time an entry
must be changed. Whether the group performing management is an IT organization
122 CHAPTER 7 MANAGING DIRECTORY ENTRIES

or a project group is not relevant, as long as the administrators have nearly identical
management responsibilities to the same group of users. Figure 7.1 shows that in this
scenario, all the entries in the directory tree are managed by a single organization.

Centralized administration requires only minimal administration infrastructure. In
addition, its central nature reduces the potential for the duplication of effort that can
sometimes occur in other models.

Such an administrative environment can result in long lead times for entry provi-
sioning, because the central group can become a bottleneck when information needs
to be created or changed. However, this is the only viable solution in many comput-
ing environments.

Some people make the mistake of assuming that centralized control is the most
secure solution. In fact, centralized control often has the undesired result of putting
too much trust in a central body that has little experience with the entities needing
management. For example, consider an extranet environment consisting of a hub
company and many spoke companies. Figure 7.2 shows this type of environment.

Central administration is not as secure in this example because Company A, B, or
C may hire and fire people at will and may not have an adequate process for notifying
the central administrators about these changes.

dc=domain,dc=com

ou=Marketing ou=Engineering

cn=Mike Lee cn=Mary Lou

Figure 7.1

Centralized administration

means that all entries are

managed by a single

organization.

Company A Company B Company C

Central Administrators

M
an

ag
es

M
anages

M
anages

Figure 7.2

Central administrators in an

extranet environment are

responsible for managing

everyone in that environment.
ENTRY MANAGEMENT MODELS 123

7.2.2 Distributed administration

The extranet scenario just described is perfect for the distributed administration
model. This model was born of the need to reduce reliance on a centralized body. As
the name implies, a centralized body may coordinate or manage key pieces, but most
administration is delegated to other groups.

Figure 7.3 shows how this model might work given the previous example. You
now have delegated administrators for each of the companies. These delegated
administrators are responsible for the users in the extranet environment belonging to
their company.

This arrangement does two good things: it makes administration highly scal-
able, and it reduces administrative bottlenecks. Such an environment scales because
each company can grow rapidly without having to increase the number of central
administrators substantially. Administrative bottlenecks are removed because there
is no longer a need to wait for approval from a group of central administrators.
Companies requiring higher levels of service can simply appoint additional dele-
gated administrators.

Company A
Users

Company B
Users

Company C
Users

Central Administrators

Delegated
Administrator

Delegated
Administrator

Delegated
Administrator

Manages Manages

M
anages

M
anages

M
anages

M
anages

Figure 7.3 The previous example, using distributed administration
124 CHAPTER 7 MANAGING DIRECTORY ENTRIES

The delegated administration environment is not new, and it is not limited to
people. One of the best examples of a distributed administration model is the Inter-
net DNS. Although a centralized body manages the very highest level of Internet
domain names (.com, .edu, and .org), everything else is delegated hierarchically.
Thus if you control domain.com, you can add the entries ldap.domain.com and
admin.domain.com; you can even delegate the administration of everything under
users.domain.com to yet another group.

In LDAP, this model of administration is common for intranets where a company
already has existing administrative domains that are normally responsible for manag-
ing their respective areas. Many off-the-shelf software packages exist to meet the need
to handle this kind of distributed administration. These tools are generally referred to
as provisioning tools; they manage directories as well as other user data stores, such as
those used by many operating systems.

The namespace used by a particular directory can play an important role in the via-
bility of the distributed administration model. This is the case because flat namespaces
can be difficult to distribute. Conversely, as seen with the DNS, administration of hier-
archical namespaces can be easily distributed. Figure 7.4 shows a namespace that is
divided along administrative boundaries, assuming that each organization maintains
its own entries.

Because it is also possible to distribute management based on information contained
within an entry rather than just its name, a flat or nearly flat namespace does not pre-
vent distributed administration. Chapter 3 describes the advantages and disadvan-
tages of many types of LDAP namespaces in terms of both management and use.

7.2.3 User self-administration/self-service

In Internet environments where users expect dynamic access to resources, user self-
management is the norm. Consider what would happen if Amazon.com required you
to wait until someone created an account before you could buy a book. Reverting to
centralized or even distributed administration in such an environment is a sure-fire
way to lose business, because people don’t have the instant access they need to make
spontaneous transactions.

dc=domain,dc=com

ou=Marketing ou=Engineering

cn=Mike Lee cn=Mary Lou

Figure 7.4

In distributed administration, a

central administrative authority

delegates administration of

entries in certain parts of the

directory tree to other bodies.
ENTRY MANAGEMENT MODELS 125

Self-administration usually involves the use of forms that allow end users to change
their own entries in the directory. This creation process may be done from scratch, as
when a new user subscribes to a site like Amazon.com.

In one variation on the self-administration model, web applications have the ability
to create and update information about users in certain parts of the directory. Other
parts of the directory—perhaps for employees with more privileges—may have more
restricted self-management. Figure 7.5 shows a directory tree in which Internet users
might be separated from other users to allow for a different level of self-management.

The practice of populating much of the directory entry based on preexisting data is
common in environments with existing users. Typically, the user supplies a key that
joins new information with existing information in another data repository. For
example, an online airline reservation application might autocreate an Internet
account for you and then assign a password based on the frequent flier number
you submit.

Security can be employed by sending only initial password information or other
confidential data to a location that has been previously verified as belonging to the
account owner. For example, such information may be sent to a postal or email address.

Many Internet sites that offer self-administration are more concerned with pre-
venting users from abusing the system than with verifying users’ identities. For exam-
ple, some online email systems allow users to create a new account without human
intervention but then send an initial password to an existing email address. This pro-
cess allows the sites to limit users to a single account and helps track down the senders
of abusive email.

7.3 CREATING PEOPLE ENTRIES

Because information about people is commonly stored in a directory server, this is a
good time to examine how you can get that information into the directory. Our first
example will show how to add an entry from scratch; the other demonstrates how to
assemble an entry based on new input combined with existing information. We’ll use
simple web-based examples, although you can just as easily do any of these examples
as command-line tools by removing the web-related code.

dc=domain,dc=com

ou=Marketing ou=Internet Users

cn=Mike Lee cn=Mary Lou

Figure 7.5

A namespace in which Internet

users are self-managed and the rest

of the tree is explicitly managed

using one of the other models
126 CHAPTER 7 MANAGING DIRECTORY ENTRIES

7.3.1 People entries via a web form

Now that we have looked at a few of the
models for entry administration, let’s walk
through a simple example of how to add a
user entry. In this example, you will create
a user entry based on input to a web form.
Such a tool could be used either by central
or distributed administrators in addition
to self-provisioning environments.

In addition to the Net::LDAP module
discussed in chapter 6, you will use a mod-
ule called CGI written by Lincoln Stein.
The Net::LDAP module will be used to
access and manipulate the directory, and
the CGI module will simplify the handling
of web forms.

Figure 7.6 shows how the example
adduser.pl code might look in a web
browser when called as a CGI script.
Listing 7.1 shows the complete code for the
adduser.pl script.

use CGI qw/:standard/;
use Net::LDAP;

my $server = "localhost";
my $port = 389;
my $user = "cn=Administrator";
my $pass = "password";
my $org = "dc=domain,dc=com";

print header,
 start_html('Add User'),
 h1('Add User'),
 start_form,
 "First Name:",textfield('givenname'),p,
 "Last Name:",textfield('sn'),p,
 "UserID:",textfield('uid'),p,
 "Mail:",textfield('mail'),p,
 submit("Add"),end_form,hr;

Figure 7.6 This output from adduser.pl

shows a new user being successfully

created.

Listing 7.1 adduser.pl
CREATING PEOPLE ENTRIES 127

if (param()) {
 my $ld = new Net::LDAP($server,port=>$port);
 $ld->bind(dn=>$user,password=>$pass);
 my $givenname = param('givenname');
 my $sn = param('sn');
 my $uid = param('uid');
 my $mail = param('mail');
 my $cn = "$givenname $sn";

 my $dn = "uid=$uid,$org";
 my $objectclass = "inetOrgPerson";

 print "Adding User: ",$dn,p;

 my $entry = new Net::LDAP::Entry();

 $entry->dn($dn);
 $entry->add("objectclass",$objectclass);
 $entry->add("givenname",$givenname);
 $entry->add("sn",$sn);
 $entry->add("uid",$uid);
 $entry->add("mail",$mail);
 $entry->add("cn",$cn);

 my $mesg = $ld->add($entry)
 if ($mesg->code) {
 print "Failed: ",$mesg->error;
 exit;
 }
 print "Okay!",p;
}

Understanding the code

You begin with the standard use lines that load the modules needed by this program.
Notice that the code uses the CGI module. The qw/:standard/ option simply
tells the module which functions you would like to use:

use CGI qw/:standard/;
use Net::LDAP;

The next few lines initialize some variables related to the LDAP server with which you
want to communicate. You will need to change these to reflect values that work in
your environment:

my $server = "localhost";
my $port = 389;
my $user = "cn=Administrator";
my $pass = "password";
my $org = "dc=domain,dc=com";

You print the top part of the form using basic functions made available by the CGI
module. In this example, you collect only very basic information. In a full version,
128 CHAPTER 7 MANAGING DIRECTORY ENTRIES

you would obviously expand this part of the code to include anything you needed
that could not be derived:

print header,
 start_html('Add User'),
 h1('Add User'),
 start_form,
 "First Name:",textfield('givenname'),p,
 "Last Name:",textfield('sn'),p,
 "UserID:",textfield('uid'),p,
 "Mail:",textfield('mail'),p,
 submit("Add"),end_form,hr;

Now you check to see if any form data has already been posted. This step is necessary
because the same script is being called to both draw and parse the form. You can do
this using the param() function provided by the CGI module. If it is defined, data
has been passed and this if statement will return true:

if (param()) {

If form data has been passed, you create a new LDAP connection object using the
connection information specified previously and collect the data passed by the web
browser. Note that you also derive the common name (cn) and distinguished name
(dn) from some of the other available values. If no form data has yet been posted,
nothing is left for the script to do, because the form was already drawn:

 my $ld = new Net::LDAP($server,port=>$port);
 $ld->bind(dn=>$user,password=>$pass);
 my $givenname = param('givenname');
 my $sn = param('sn');
 my $uid = param('uid');
 my $mail = param('mail');
 my $cn = "$givenname $sn";

 my $dn = "uid=$uid,$org";
 my $objectclass = "inetOrgPerson";

 print "Adding User: ",$dn,p;

The next step is to create a new LDAP entry and populate it with the information you
collected previously:

 my $entry = new Net::LDAP::Entry();

 $entry->dn($dn);
 $entry->add("objectclass",$objectclass);
 $entry->add("givenname",$givenname);
 $entry->add("sn",$sn);
 $entry->add("uid",$uid);
 $entry->add("mail",$mail);
 $entry->add("cn",$cn);
CREATING PEOPLE ENTRIES 129

The add() method in the connection class can now be called to create the new
entry in the directory. As mentioned in chapter 6, adding the values only changes the
entry in memory. Changes are not committed to the directory until the add()
method is called:

 my $mesg = $ld->add($entry);
 if ($mesg->code) {
 print "Failed: ",$mesg->error;
 exit;
 }
 print "Okay!",p;
}

That’s it. Now you simply plug the script into the appropriate place on your web
server and try it out.

NOTE If you click the Add button a second time with the same UserID value, you
will get the following message:
Adding User: uid=juser,o=test
Failed: Already exists

Doing a query using the simple_search.pl example from chapter 6, you can see this
entry in LDIF:

dn: uid=juser,dc=domain,dc=com
cn: Joe User
sn: User
uid: juser
givenname: Joe
mail: juser@domain.com
objectclass: top
objectclass: person

objectclass: inetOrgPerson
objectclass: organizationalPerson

Once again, notice how the objectclass attribute contains both the object class
you assigned to the entry and the object classes from which you are inheriting. Other-
wise the entry contains exactly what was submitted.

7.3.2 People entries based on existing data

As we already mentioned, in some cases you may have existing data that will be used
to instantiate new things. Let’s look at an example that allows you to create a user
entry that uses existing information as a base. This technique is useful in reducing the
amount of data that must be entered when some information already exists about the
entity being created. In this example, you will pull in information from an existing
user repository, but it is perfectly reasonable for this information to come from data-
bases or even other directories.

The output of the example addimportuser.pl script looks something like figure 7.7.
Listing 7.2 shows the complete code for the addimportuser.pl script.
130 CHAPTER 7 MANAGING DIRECTORY ENTRIES

use CGI qw/:standard/;
use Net::LDAP;

my $server = "localhost";
my $port = 389;
my $user = "cn=Admin";
my $pass = "manager_password";
my $org = "dc=domain,dc=com";
my $maildomain = "domain.com";

print header,
 start_html('Sync User'),
 h1('Sync User'),
 start_form,
 "UserID: ",textfield('uid'),p,
 "Password: ",password_field('password'),p,
 submit("Sync"),end_form,hr;

if (param()) {
 my $ld = new Net::LDAP($server,port=>$port);
 $ld=>bind(dn=>$user,password=>$pass);
 my $uid = param('uid');
 my $password = param('password');

 my ($login,$pass,$userid,$groupid,$quota,
 $comment,$gecos,$home,$shell,$expire) = getpwnam($uid);

 if (!$login || crypt($password,$pass) ne $pass) {
 print "Invalid Username or Password.",p;

Figure 7.7

Sample output from addimportuser.pl

shows a user being synced to LDAP if

he or she correctly enters their exist-

ing operating system UserID and

password.

Listing 7.2 addimportuser.pl
CREATING PEOPLE ENTRIES 131

 print "Crypt: $pass",p;
 exit;
 }
 $gecos =~ /(\w+)$/;
 my $sn = $1;
 my $dn = "uid=$uid,$org";
 my $entry = new Net::LDAP::Entry();
 $entry->dn($dn);

 $entry->add("objectclass",["top", "person", "inetOrgPerson"]);
 $entry->add("cn",$gecos);
 $entry->add("sn",$sn);
 $entry->add("userPassword","{crypt}$pass");
 $entry->add("uid",$uid);
 $entry->add("mail","$uid\@$maildomain");

 print "Adding $dn.",p;
 my $mesg = $ld->add($entry);
 if ($mesg->code) {
 print "Failed: ",$mesg->error;
 exit;
 }
 print "Okay!";
 exit;
}

Understanding the code

Again, you begin with the standard use lines that load the modules needed by
this program:

use CGI qw/:standard/;
use Net::LDAP;

Be sure to change the variables to reflect your environment:

my $server = "localhost";
my $port = 389;
my $user = "cn=Admin";
my $pass = "manager_password";
my $org = "dc=domain,dc=com";
my $maildomain = "domain.com";

Next, you print a basic HTML form and check to see if any form data has already
been passed to your script. As in the last example, you use the same script to display
and parse the form, so you must check to see if form data has already been posted in
order to change the script’s behavior depending on how it is run:

print header,
 start_html('Sync User'),
 h1('Sync User'),
 start_form,
 "UserID: ",textfield('uid'),p,
132 CHAPTER 7 MANAGING DIRECTORY ENTRIES

 "Password: ",password_field('password'),p,
 submit("Sync"),end_form,hr;

if (param()) {

You now create an authenticated connection object and gather the form data entered
by the user:

 my $ld = new Net::LDAP($server,port=>$port);
 $ld->bind(dn=>$user,password=>$pass);
 my $uid = param('uid');
 my $password = param('password');

The next few lines do the fancy work necessary to find the existing information that
will be used to instantiate information within your new entry. This particular example
should work fine if you are using a Unix /etc/passwd file that uses crypt-style pass-
words. This style is the default on most traditional Unix platforms and is usually an
option on newer Unix-based operating systems. Some recent Linux and BSD distribu-
tions use MD5 passwords by default, and many systems use shadow files. You will need
to change these lines in either of these cases. Under Windows NT, you can use one of
the special modules (Win32::NetAdmin) for accessing the NT account information:

 my ($login,$pass,$userid,$groupid,$quota,
 $comment,$gecos,$home,$shell,$expire) = getpwnam($uid);

 if (!$login || crypt($password,$pass) ne $pass) {
 print "Invalid Username or Password.",p;
 print "Crypt: $pass",p;
 exit;
 }

Here you parse out the last name from a field that you expect to contain the user’s full
name. You also generate a distinguished name for this entry:

 $gecos =~ /(\w+)$/;
 my $sn = $1;
 my $dn = "uid=$uid,$org";

Now you create a new Net::LDAP::Entry object and populate it with the information
you were able to collect and derive earlier. Notice how you are able to derive the
mail attribute from the uid attribute, a static mail domain, and a defined creation
pattern (uid plus @ plus mail domain). This is a common way to reduce the amount
of data entry needed to create a directory entry:

 my $entry = new Net::LDAP::Entry();
 $entry->dn($dn);
 $entry->add("objectclass",["top", "person", "inetOrgPerson"]);
 $entry->add("cn",$gecos);
 $entry->add("sn",$sn);
 $entry->add("userPassword","{crypt}$pass");
 $entry->add("uid",$uid);
 $entry->add("mail","$uid\@$maildomain");
CREATING PEOPLE ENTRIES 133

Finally, you call the add() method to communicate your desired change to the
LDAP server:

 print "Adding $dn.",p;
 $mesg = $ld->add($entry);
 if ($mesg->code) {
 print "Failed: ",$mesg->error;
 exit;
 }
 print "Okay!";
 exit;
}

7.3.3 Summary of creating entries

You now have two methods of creating new entries in the directory. The difference
between these methods is the way in which most of the initial user data is input. In
the first example, the person accessing the web page enters most of the data by hand,
whereas in the second example, you use a minimal amount of information from the
person accessing the web page to locate more extensive existing information that can
be used to populate the directory.

Generally speaking, if good information already exists, there is no reason not to use
it. In chapter 8, which discusses synchronization and migration, we talk about auto-
mating some types of directory population. The previous example also works well to
give administrators and end-users the ability to link accounts when no common key
currently exists to link that information.

Neither of these examples spends much time dealing with error conditions, such
as those that occur when an entry already exists within the directory or bad data is
entered. Such error checking is shown extensively in chapter 6 and is left as an exercise
for you.

Another likely improvement for any production use of these examples would be to
add an input to accept a login and password for an administrative user. The existing
examples do not require authentication by the web user and perform activities on the
directory as a superuser. This approach is insecure and is easily remedied by requiring
authentication on the web form or server.

7.4 CREATING AND MAINTAINING GROUPS

Group entries in LDAP lump together other entries such that applications can treat
those other entries in a similar manner. Entries often share commonalities with other
entries. For example, several people may belong to the same department, and many
printers may be situated on the same floor.

When you’re managing entries, it is often important to put them into groups
based on these commonalities—the whole idea of LDAP is to allow sharing of infor-
mation across multiple applications. Grouping people or accounts inside an applica-
tion does not promote this type of information cross-functionality. On the other
134 CHAPTER 7 MANAGING DIRECTORY ENTRIES

hand, specifying groups within the directory allows these groups to be reused. For
example, a group that contains a list of managers can be used both for security and as
an email list.

In LDAP, groups can be managed two ways: explicitly and dynamically. Not all
directory servers support dynamic groups, although support for them is becoming
more common.

7.4.1 Explicit groups

Explicit groups’ members are listed explicitly. The standard object class for group
entries is groupOfUniqueNames, so named because each member is the distin-
guished name of an entry that belongs to this group.

Explicit groups work wonderfully in situations where members are relatively static
or people are allowed to add themselves as members. An example of the latter would
be an email mailing list to which anyone can subscribe.

Here is an LDAP group shown in standard LDIF format:

dn: cn=My Explicit Group,dc=manning,dc=com
objectclass: groupOfUniqueNames
cn: Explicit Group
uniquemember: uid=hall,dc=manning,dc=com
uniquemember: uid=csmith1,dc=manning,dc=com

This example group has two members; each member is specified by a distinguished
name in the directory. Most directory servers will not check to be sure the distin-
guished names listed actually exist in the directory. In addition, the LDAP protocol
has no expectation that if the distinguished name for a user changes, the value of
uniquemember will change automatically. This lack of dependable relational integ-
rity has been cited throughout the book as a consideration for namespace design.

NOTE Sun One and other directory servers offer the ability to use plug-ins and
other mechanisms to maintain relational integrity. Although these tools
are generally reliable, they are also proprietary; it is unwise to depend on
this functionality.

When allowing for automatic group management, it can be useful to populate the
owner attribute with the distinguished name of the group’s owner. For example:

dn: cn=My Explicit Group,dc=manning,dc=com
objectclass: groupOfUniqueNames
cn: Explicit Group
owner: uid=wu1,dc=manning,dc=com
uniquemember: uid=hall,dc=manning,dc=com
uniquemember: uid=csmith1,dc=manning,dc=com

One gotcha with the owner attribute is that many applications do not include the
distinguished name listed in that attribute as an actual member of the group. So, if
the owner is also a member, they should be specified twice.
CREATING AND MAINTAINING GROUPS 135

7.4.2 Dynamic groups and LDAP URLs

A weakness with explicit groups is that many groups’ membership changes frequently.
An obvious example is a group based on a division or department. In such situations,
it may be better to simply say that the group contains all the entities that match a
given criteria.

For example, a particular department-based group may contain all the entries
whose attribute department is set to AAAA. Therefore, if a person’s entry is changed
to reflect a departmental change, any groups built by referencing this attribute will
automatically reflect this change.

Dynamic groups use LDAP Universal Resource Locators (URLs). The format for
LDAP URLs is defined by the IETF in RFC 2255 and can be used to represent LDAP
search criteria as a single string. Here’s an example URL:

ldap://localhost:389/dc=manning,dc=com?cn,sn?sub?(objectclass=person)

In this example, the first part (ldap://localhost:389) specifies that the URL refers to an
LDAP connection to the server running on port 389 of localhost. The next part of the
URL (dc=manning,dc=com) specifies the search base, and the comma-separated list
after the first question mark includes the list of attributes to return. If you leave the
return list empty, all attributes will be returned. Finally, the last major component in
this example is the LDAP filter.

If you wanted to use this filter to create a dynamic group, you would add the filter
to an entry with the groupOfURLs objectclass:

Dn: cn=My Dynamic Group, dc=manning, dc=com
Objectclass: groupOfURLs
Memberurl: ldap:///dc=manning,dc=com??sub?(objectclass=person)

This group would include all entries on the current server under the dc=man-
ning,dc=com branch with an objectclass of person as members of the
dynamic group. You could use a more complex search filter to narrow the types of
people to include in the group.

Dynamic groups are not a well-documented standard, but they are becoming
increasingly well supported by major directory vendors. When you need to create
groups larger than a moderate size, dynamic groups can ease overall group management.

7.5 REPRESENTING AND MANAGING
ACCOUNT INFORMATION

Accounts and people are often two different things. Whereas accounts may be specific
to applications or systems, people are unique entities. In this section, we’ll look at
managing user accounts, rather than information about unique individuals or groups.

For many organizations, a worthy goal would be to represent and manage account
information in an LDAP-enabled directory service. Doing so would allow user
136 CHAPTER 7 MANAGING DIRECTORY ENTRIES

accounts for groups of machines to be managed centrally, reducing security risks from
stale accounts and allowing linkage to people entries (as discussed later in this chapter).
Unfortunately, because different systems are designed to require different account
information, no single object class could possibly cover everything from IBM RACF
to Microsoft Windows. For example, a Unix account entry needs to be associated with
a login shell that makes a difference in the user’s environment when using a system.
The choice of shell may even differ among Unix systems, let alone the fact that there
is no such concept on a system running Windows 2000.

7.5.1 Unix user accounts

Most Unix-based operating systems, including Linux, come out-of-the-box using
simple structured flat files to store user and group account information. Sun’s NIS is
available on most Unix platforms as a means of sharing information about accounts
and groups, and other data that may be needed across multiple systems. NIS is, in
many ways, a simple operating system–specific directory service.

With its flat namespace and limited extensibility, NIS is a directory service with
limited scalability. However, schema definitions exist for representing NIS data in an
LDAP directory. Combined with plug-ins for specific operating systems, it is often
possible to use LDAP to store information that would normally be found in NIS, with
the result of completely replacing NIS.

The RFC 2307 specification from the IETF defines a number of object classes, as
shown in table 7.1.

Table 7.1 Object classes defined by RFC 2307

Object class Description

posixAccount Attributes corresponding to fields in a common passwd file

shadowAccount Password and password expiration information

posixGroup Group and group membership information

ipService Port and protocol used by various IP services

ipProtocol Internet Protocol to protocol number mappings

oncRpc RPC mappings

ipHost Host to IP address mappings

ipNetwork Network name to network address mappings

nisNetgroup Grouping of hosts and/or users

nisMap Description of an NIS map

nisObject Entry in an NIS map

Ieee802Device Auxiliary object class for any device with a MAC address

bootableDevice Auxiliary object class for any device with boot parameters
REPRESENTING AND MANAGING ACCOUNT INFORMATION 137

Although all the object classes defined by RFC 2307 are useful in directory-enabling
the management of Unix servers, we will focus for now on account and group infor-
mation. This information is stored in the posixAccount, shadowAccount, and
posixGroup object classes.

The attribute types allowed and required by posixAccount are virtually iden-
tical to the fields found in a standard passwd file: uid, userPassword, uidNum-
ber, gidNumber, gecos, homeDirectory, and loginShell. The only
additions not normally found in the Unix passwd file are cn and description.

Adding users with Net::LDAP

You can construct a simple text-based interface for adding new users with Net::LDAP;
see listing 7.3. This technique is similar to what you did with people entries using
web forms earlier in the chapter.

use Net::LDAP;

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

print "Username: ";
$username = <>;

print "Password: ";
$password = <>;

print "UID#: ";
$uid = <>;

print "GID#: ";
$gid = <>;

print "Full Name: ";
$gecos = <>;

print "Home Directory: ";
$home = <>;

print "Shell: ";
$shell = <>;

$entry = new Net::LDAP::Entry();
$entry->add("uid",$username);
$entry->add("uidNumber",$uid);
$entry->add("gidNumber",$gid);
$entry->add("gecos",$gecos);
$entry->add("homeDirectory",$home);
$entry->add("loginShell",$shell);
$entry->add("userPassword",$password);
$entry->add("cn",$username);

Listing 7.3 account_add.pl
138 CHAPTER 7 MANAGING DIRECTORY ENTRIES

$dn = "cn=" . $username . ", ou=Division A, ou=Accounts," .
 " dc=domain, dc=com";
$entry->dn($dn);

$mesg = $conn->add($entry);
if ($mesg->code) {
 print "An error occurred adding the account to the directory.\n";
 die $mesg->error;
}

print "Account added successfully!\n";

You begin by using the connection class to open an authenticated connection:

use Net::LDAP;

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

With your connection open, you can begin gathering the information you need to
create a user account:

print "Username: ";
$username = <>;

print "Password: ";
$password = <>;

print "UID#: ";
$uid = <>;

print "GID#: ";
$gid = <>;

print "Full Name: ";
$gecos = <>;

print "Home Directory: ";
$home = <>;

print "Shell: ";
$shell = <>;

Now that you have all the necessary information, you can construct your entry
object. Notice that the code uses the posixAccount object class defined by
RFC 2307:

$entry = new Net::LDAP::Entry();
$entry->add("uid",$username);
$entry->add("uidNumber",$uid);
$entry->add("gidNumber",$gid);
$entry->add("gecos",$gecos);
$entry->add("homeDirectory",$home);
$entry->add("loginShell",$shell);
$entry->add("userPassword",$password);
REPRESENTING AND MANAGING ACCOUNT INFORMATION 139

Although you’ve populated the entry with all the information you collected, two con-
structed elements are still missing:

• Distinguished name

• Required cn attribute

Much of how you construct the distinguished name or assign the common name
depends on how you have structured your namespace. Remember that whichever
attribute you use as your naming component needs to be unique at a particular level
in the directory tree.

Perhaps the best way to represent accounts in the directory tree is to distinguish
them by the fact that they are accounts and by the administrative domain to which
they belong. For example, let’s use the directory tree in figure 7.8.

You can assign the value of the uid attribute to the common name and construct the
distinguished name using the common name as the naming component:

$entry->add("cn",$username);

$dn = "cn=" . $username . ", ou=Division A, ou=Accounts," .
 " dc=domain, dc=com";
$entry->dn($dn);

You can now simply add the entry to the directory:

$mesg = $conn->add($entry);
if ($mesg->code) {
 print "An error occurred adding the account to the directory.\n";
 die $mesg->error;
}
print "Account added successfully!\n";

Running this new code gives you output that looks something like the following:

Username: hjones
Password: abc123
UID#: 100
GID#: 100

dc=domain,dc=com

ou=Accounts ou=People

ou=Division A ou=Division B

cn=username1 cn=username2

Figure 7.8

This directory tree allows

you to ensure uniqueness

within a particular adminis-

trative domain—in this

case, a division. It also

separates accounts from

people.
140 CHAPTER 7 MANAGING DIRECTORY ENTRIES

Full Name: Harry Jones
Home Directory: /home/hjones
Shell: /bin/ksh
Account added successfully!

There is obviously room for improvement; you could add such features as auto-
incrementing UID counters, more intelligent defaults for home directories and shells,
and perhaps automatic generation of usernames based on full name or some local
account naming standards. If you were ambitious, you might also decide to create a
web-based front-end that would present a better user interface, as in the example ear-
lier in this chapter.

You should also strengthen security by removing the hard-coded password and
requiring that the person running the script enter his own credentials upon execution.
Turning off or masking the password as it is typed would also be a worthwhile
enhancement, as would encrypting the password prior to storage in the directory.

7.5.2 Linking Unix accounts to people

Storing accounts in a more generalized directory service, rather than in a specialized
directory that exists solely for account information, simplifies linking accounts to the
people that own them. Doing so is important in hire-fire scenarios where changes to
data in human resources information systems automatically cause the creation, modi-
fication, or deletion of accounts in other systems. Such seamless account manage-
ment is virtually impossible without strong mappings between accounts and people.

You can create this linkage either by putting an identifier for the person within the
account, or by putting an identifier for the account within a person entry. Because a
person may have more than one account, such an identifier within a person entry will
be multivalued.

Adding the following bold code to the previous example will ask the administrator
for the employeeNumber to be associated with the new account and add it to the
account. Of course, the object class being used must allow that attribute:

print "Shell: ";

$shell = <>;

print "Employee#: ";
$employeeno = <>;

$entry = new Net::LDAP::Entry();
$entry->add("uid",$username);
$entry->add("employeeNumber",$employeeno);

You can easily search the directory for the distinguished name of the entry containing
the specified employee number. Doing so offers input validation and allows you to
store the information in an attribute with a distinguished name syntax that can be
easily used in most directories to allow employees to change certain account informa-
tion, such as their shell.
REPRESENTING AND MANAGING ACCOUNT INFORMATION 141

7.6 MANAGING OTHER INFORMATION

So far, we’ve focused on managing people, accounts, and groups. Although this type
of information is important in most directories, LDAP’s flexibility offers you the abil-
ity to easily represent other types of entities—everything from organizations to net-
work devices.

Managing these other types of information in the directory makes sense only when
there is some agreement on a common schema, because directories are most useful in
their ability to share information that can be used by multiple applications. If nobody
agrees on a schema, there is little advantage in using a directory over a database.

It would be out of our scope to try to present specific management tools for each
type of information being managed; most would be similar to those presented earlier
in this chapter. However, we will explore some of the issues associated with managing
different types of information—particularly information for which there is some con-
sensus on a common schema.

7.6.1 Security services information

The most common current application for directories besides white pages and user
management is storing information for security services. Such information often
includes authorization policies and credentials used for authentication.

We have already discussed managing account passwords. Storing password infor-
mation in other locations is beneficial in another case: single sign-on. Certificates,
required for strong public key authentication, may be stored with an entry just as pass-
words are, but there is less necessity to do so. The unique management issues associated
with single sign-on and certificate storage are discussed in more detail in chapter 12.

Managing policy information is different, because it involves more than manage-
ment of a single data element: it depends on the representation of rules that have been
externalized from application logic. Most applications and services storing this type of
information currently use proprietary schemas and namespaces structured in a way that
allows the representation of more complex relationships. If you’re interested in man-
aging policy information, you’ll need to get the vendor’s policy schema and namespace.

7.6.2 DNS information

The inventors of LDAP explicitly state that it is not designed to be a replacement for
DNS: DNS is a naming service, whereas LDAP is a directory service. However, this
difference does not mean that LDAP cannot or should not be the source of informa-
tion used by a local DNS service. In fact, the latest versions of Bind include the ability
to source DNS records in an LDAP directory. This functionality is interesting, but
without a proper management tool, it would be much more difficult to manage DNS
information in the directory than it would be to manage it in existing file-based
stores. People with experience managing DNS servers know that the most common
problems occur when someone makes a typographical error in a configuration file
and thereby invalidates a large number of records.
142 CHAPTER 7 MANAGING DIRECTORY ENTRIES

A simple administration interface would make it possible to create distributed
DNS management tools with better audit trails and access control than a typical file-
based solution. Such an interface would also be less error-prone than the approach
just mentioned.

7.6.3 Directory Enabled Networking information

The DEN initiative was introduced in chapter 1. As mentioned there, it is primarily
focused on object modeling. More directories are beginning to support schemas
derived from these models.

On the LDAP side, there is little difference between managing a person and man-
aging a router. The big question is, “Where does information come from?” In the
case of a router, you can poll information from it dynamically using SNMP or possi-
bly from a database used by applications like HP OpenView, Tivoli, and others of
this nature.

Although the DEN schema is becoming well defined, the limitations on DEN’s
acceptance stem primarily from a lack of native support for related standards within
the products that need to be managed. For example, you can manipulate informa-
tion about a router in the directory and even write a separate application to read that
configuration from the directory periodically and write it to the particular router—
but it is much more desirable for the router to be able to read the directory itself to
“self-configure” as necessary. This approach would allow smarter, more dynamic
network configuration.

7.6.4 Card catalog information

One of the pilot schemas included with the University of Michigan LDAP server can
be used to create a card catalog for documents. Entries using this schema do not store
the documents themselves, but rather store the metadata about these documents. The
only disadvantage is that most existing applications don’t understand this schema
out-of-the-box; in addition, better systems undoubtedly exist for providing this func-
tionality using the web and databases.

7.7 SUMMARY

There are three common models for managing directories: centralized, distributed,
and self-administration. Most environments use some mix of these three models to
develop a good, balanced management system.

In this chapter, we walked through the creation of several web-based tools for add-
ing users, both from scratch and with existing information. We also looked at man-
aging groups and accounts, with several examples that show how a typical Unix or
Linux account can be managed in a directory. Finally, we discussed some of the issues
involved in storing information that is not related to people or groups in the directory.

In the next chapter, we move from manual entry management to automated mech-
anisms for getting information into the directory server.
SUMMARY 143

C H A P T E R 8

Synchronizing LDAP
information

8.1 Approaches to data flow

management 145
8.2 Data flow analysis 146
8.3 Interchange formats 150

8.4 Migration to LDAP 152
8.5 Joining related information 159
8.6 Synchronization 162
8.7 Summary 167
No directory exists in a vacuum. New tools and products are making directory co-
existence and migration much easier tasks than they used to be. Unfortunately, no
tool is smart enough to understand the idiosyncrasies of every environment.

In this chapter, we look at the process of moving information to and from an LDAP
directory. We will answer these questions:

• What are the three basic approaches to managing data flow?

• What aspects of the data stores must be understood prior to successful migra-
tion or synchronization?

• What is LDIF, and how can it be used for data interchange?

• How can data be migrated to an LDAP directory? What issues exist when join-
ing with existing data?

• What is the best way to synchronize from an LDAP directory?

• What are the issues with bidirectional synchronization?
144

8.1 APPROACHES TO DATA FLOW MANAGEMENT

There are three basic approaches to managing data flow between various data
repositories:

• Replication

• File export/import

• Scripting

Each approach has benefits and drawbacks that make it a good choice for some situa-
tions and a horrifying nightmare in others.

In addition to these basic approaches, a whole segment of the directory market is
devoted to tools designed to ease directory integration issues. These tools are divided
into synchronization products called metadirectories and real-time transformation
products called virtual directories. Metadirectories try to take out some of the legwork
of the data access, time-stamping, and basic transformation that we show throughout
this chapter. Virtual directories, on the other hand, take the approach that the infor-
mation was just fine where it was before, and the solution is to change the presentation
of information rather than the location of information. Both types of tools are dis-
cussed in more detail at the end of chapter 1.

8.1.1 Replication

Replication is the process of exactly duplicating data between directories (see
figure 8.1). Replication is a way of creating copies of information for purposes such as
geographic distribution of data, performance, scalability, and redundancy.

Although many servers support replication to other servers from the same vendor,
there is currently no standard for LDAP replication. However, the IETF is in the pro-
cess of developing a standard called LDUP.

Even if standard replication existed, it is not always necessary or desirable for all
information to be duplicated between two directories. Additionally, not all data
sources can be queried or replicated using the LDAP standards.

o=xyz, c=US o=xyz, c=US

Bidirectional Replication

Server A Server B

Figure 8.1

Replication allows two or more

servers to have a mirror image of all

or part of the directory tree.
APPROACHES TO DATA FLOW MANAGEMENT 145

8.1.2 File export/import

Exporting a data file from one directory server and then importing that same data to
a different server does not require special protocol support by either server. Figure 8.2
shows how data can be exported from one server and imported into another. Between
the import and export process, the data can easily be manipulated as necessary to
meet the needs of applications using the second directory.

Adding to the benefits of this approach is the fact that two well-defined formats,
LDIF and DSML, exist for data files containing LDAP entries. The drawback of this
approach is that delays usually associated with periodic exports and imports can
potentially let data get out of sync.

8.1.3 Scripting

The process we’ll focus on throughout this chapter is scripting. Scripting is the process
of using languages such as Perl to access, transform, and update information in a way
that allows it to flow effectively from one data store to another. Although scripting
isn’t as tightly coupled with the server as replication, scripted synchronization and
migration allow you to perform data transformation, schema mapping, and
namespace translation as you read entries from one directory and place them in
another directory. It also allows you to easily select and synchronize only the subset of
data that should be shared between servers.

8.2 DATA FLOW ANALYSIS

Prior to jumping into synchronization and migration, it is important for you to under-
stand the type of up-front analysis that must be done to make this process successful.

o=xyz, c=US o=xyz, c=US

Server A Server B

Export Import

LDIF File

Figure 8.2

Exporting and importing LDIF or other

data formats allows for manipulation

of a flat data file to accommodate dif-

ferences between directories.
146 CHAPTER 8 MOVING INFORMATION

8.2.1 Schema mapping

Schema mapping is required when the two data stores use different attribute types or
data fields to store the same information. For instance, consider a situation in which
an LDAP-enabled directory has a custom attribute called buildingLocation-
Code. If a peer in another part of the organization creates another attribute in her
directory called locationCode, it will be necessary to create an entry in a mapping
table indicating that the two attributes are the same (figure 8.3).

8.2.2 Determining the authoritative source

The most important thing to remember when moving data is that some data is better
than other data. If you are simply migrating from one data store to another (for
example, from a spreadsheet to LDAP), the source data is obviously more interesting
than the empty destination data store. In situations where multiple data sources are
being migrated, or where synchronization is being performed, finding the authorita-
tive source for each attribute is absolutely critical.

The authoritative source can only be determined by careful analysis of each of the
data repositories being connected. Generally speaking, the authoritative source will
contain the freshest and most accurate version of the information stored in a particular
attribute. For example, you might see that a facilities database is constantly updated
with location codes, whereas an enterprise LDAP server rarely gets direct updates. In
that situation, the facilities database is probably the authoritative source. As shown in
figure 8.4, it is completely possible for different parts of the whole to be authoritative
in different repositories.

Directory A

buildingLocationCode

Directory B

locationCode

Figure 8.3 The attribute buildingLocationCode in one directory is the

same as locationCode in another.

Directory A Directory B

name name

address address

Figure 8.4 The name attribute is authoritative in directory A, whereas

address is authoritative in directory B.
DATA FLOW ANALYSIS 147

Let’s envision a thriving company that has, over time, deployed various data stores.
Among these data stores are the company’s HR system, email directory, and facilities
database. After some analysis, you might determine that the email directory is the
authoritative source for email information; HR is authoritative for department, job
title, and related information; and the facilities database is an excellent source for tele-
phone and location information (see figure 8.5).

Be sure to consider the information from chapter 7 about entry management. The direc-
tory most often used as a destination for data in other repositories may itself be author-
itative for certain fields, depending on the model used to manage directory entries.

8.2.3 Data transformation

Data transformation is necessary because not all systems represent the same informa-
tion in an identical fashion. For example, figure 8.6 illustrates a circumstance in
which one data store maintains a user’s department as an account code and another
system uses text that describes the department. To synchronize information from the
first data store to the second, you must first transform the data in the first system
such that it matches the format of the data in the second.

Human Resources
Database

Name
Telephone

Department
JobTitle

Email
Location

Email Directory

Name
Email

Telephone
Location

Department
JobTitle

Facilities Database

Name
Telephone
Location

Figure 8.5 Each data store has a set of attributes for which it should be authoritative.

Here, the authoritative attributes in each data store are bold.

Directory A

Department: 551

Directory B

Department: Technology ServicesEquivalent

551: Technology Services
552: Human Resources
553: Sales
554: Finance

Lookup Table

Figure 8.6 Department 551 is equal to Technology Services. Directory A uses a numeric

representation, whereas directory B uses a string description.
148 CHAPTER 8 MOVING INFORMATION

8.2.4 Namespace translation

The namespaces on two servers may not be the same. In fact, even when you’re
synchronizing LDAP servers within the same company, the namespace often varies
in depth and RDN usage. Figure 8.7 shows a company with two directories in
which everything is the same except the top-level naming components.

In the simplest cases, solving synchronization and migration issues related to
namespace differences may be as easy as changing the root naming context (such as
o=xyz,c=us to dc=xyz,dc=com). Many situations, such as the one shown in fig-
ure 8.8, require that such translation be more intelligent. This is usually the case
when depth and RDN attributes vary between servers.

Many data stores do not support LDAP-style distinguished names, thus making this
more a process of namespace generation than translation. For example, the database
in figure 8.9 does not offer any real hierarchy that relates to the hierarchy shown in
the directory server.

In such cases, you will need to derive the hierarchy based on other information. For
example, if you always use dc=xyz,dc=com as the suffix and the namespace is flat
below that, you can put all the database information into entries beneath that level.

o=XYZ,c=US

cn=Tom cn=Linda

dc=xyz,dc=com

cn=Tom cn=Linda

Directory A Directory B

Same RDNs

Figure 8.7 Directories using the same RDNs, but under different trees, cannot

be synchronized using true replication. However, they are not as difficult to syn-

chronize programmatically.

o=XYZ,c=US

cn=Tom cn=Linda

dc=xyz,dc=com

cn=Tom cn=Linda cn=Jodyou=Marketing ou=Engineering

cn=Jody

Directory A Directory B

Figure 8.8 Directory A has a deeper namespace than directory B. Any synchronization

between the two directories will require smarter namespace translation.
DATA FLOW ANALYSIS 149

If you’re dividing the directory tree organizationally or geographically, other informa-
tion in the database will help you determine the namespace to use within the directory.

8.3 INTERCHANGE FORMATS

Two formats exist for representing LDAP information outside the directory server.
The first, LDIF, is a convention supported by a wide variety of existing directory ven-
dors. The other, DSML, is the emerging standard and is based on XML. Both of these
standards were covered in great detail in chapter 5, but here is a simplified review.

8.3.1 LDAP Data Interchange Format

The LDIF file format is not a core LDAP standard, but it is a widely followed conven-
tion that is supported by many LDAP servers and applications. We’ll use LDIF in
many examples throughout this chapter. These examples will take advantage of
Net::LDAP’s support for LDIF.

At its most basic, LDIF is written as follows:

dn: <entry distinguished name>
objectclass: <objectclass-1>
objectclass: <objectclass-n>
<type-1>: <value-1>
<type-1>: <value-2>
<type-2>: <value-3>

The first line always indicates the distinguished name of the entry to follow. The next
few lines indicate the object classes that the entry uses. The remaining lines simply
associate a value with a particular attribute type.

Here is an example of a real entry represented as LDIF:

cn=Linda cn=Tom cn=Jody

dc=com

dc=xyz

DirectoryDatabase

DN
Generation

Name, Phone, Email
Linda,555-1212,linda@xyz.com
Tom,555-1234,tom@xyz.com
Jody,555-9876,jody@xyz.com

Figure 8.9 A database without a hierarchical namespace requires you

to generate distinguished names for new entries.
150 CHAPTER 8 MOVING INFORMATION

dn: cn=Joe Schmoe, dc=xyz, dc=com
objectclass: top
objectclass: person
cn: Joe Schmoe
sn: Schmoe
telephoneNumber: +1-847-555-1212

In cases where the text is not printable, such as with an audio clip or a JPEG photo,
the value of the entry is Base64 encoded. The Base64-encoded value is then separated
from the attribute type by two colons rather than one:

jpegPhoto:: <Base64 encoded jpeg photo>

In addition to binary values, the following types of values also must be Base64
encoded when written in LDIF format:

• Values that begin with a semicolon (;) or space

• Values that contain characters outside printed ASCII

If the line is longer than can normally be displayed without wrapping (such as a long
Base64-encoded value), you can continue the line by beginning a new line with a sin-
gle space. The following two attributes are exactly the same:

cn: Joe Sch
<1 space>moe

cn: Joe Schmoe

8.3.2 Directory Services Markup Language

As introduced in chapter 5, DSML is a relatively new standard that has been devel-
oped by Bowstreet with participation from IBM, Microsoft, Sun, Novell, and Oracle.
Here is an example of what an LDAP entry might look like if encoded using DSML:

<dsml:entry dn="cn=Joe Schmoe,dc=xyz,dc=com">
 <dsml:objectclass>
 <dsml:oc-value>top</dsml:oc-value>
 <dsml:oc-value>person</dsml:oc-value>
 </dsml:objectclass>
 <dsml:attr name="cn"><dsml:value>Joe Schmoe
 </dsml:value></dsml:attr>
 <dsml:attr name="sn"><dsml:value>Schmoe
 </dsml:value></dsml:attr>
 <dsml:attr name="telephoneNumber">
 <dsml:value>+1-847-555-1212<dsml:value>
 </dsml:attr>
</dsml:entry>

This code may not be quite as easy to read as LDIF, but it has the advantage of being
readable by any application or editor that supports XML and is aware of the DSML
document type definitions.
INTERCHANGE FORMATS 151

Not only does DSML define a way for directory entries to be represented in XML,
it also does the same for directory schemas. We’ll look at DSML in greater detail in
chapters 10 and 12. Included there are examples of how to use a Perl XML parser to
read entries written to the DSML specification. We will also explain how to read the
DSML schema for an object class. Both of these techniques make it possible to use
DSML easily as an import/export format in a directory integration process.

8.4 MIGRATION TO LDAP

In this book, we consider migration to be a one-time movement of data from one
data source to another (see figure 8.10). Sometimes this process is performed more
than once, but the basic idea is that the old data source goes away and is replaced by a
new one after a defined cut-off time.

8.4.1 Migrating a simple table

A wide variety of data sources can be represented as tables, including databases and
spreadsheets. For this reason, we’ll begin by looking at how to migrate a table con-
taining information you would like to put into your directory.

For the sake of example, we will concentrate on migrating a few simple data
elements:

Smith,Bob,847-555-1212,bsmith@xyz.com
Johnson,Joe,815-555-1212,jjohnson@xz.com

The comma-separated lines represent two people. The first two columns make up the
person’s name, and the latter two make up the telephone number and email address.

NOTE Picking an appropriate field separator is important. Although this example
uses commas for simplicity, commas appear often in data. It may be wise
to instead use a separator that needs less special treatment. One commonly
used separator that fits the bill is the pipe (|) character.

Before you can do anything with this data, you need to look at the namespace and
schema you plan to use. For the sake of example, let’s assume all your entries exist
below a naming context of dc=xyz,dc=com and your RDNs are made up of the
uid attribute and the value to the left of the at sign (@) in an email address.

Directory

Migration
Data

Storage

Figure 8.10

Directory migration is typically a one-way, one-

time movement from a legacy data store to a

directory service supporting open standards,

like LDAP.
152 CHAPTER 8 MOVING INFORMATION

Here is a bit of Perl code to read the previous lines from standard input and create
their distinguished names:

while ($line = <>)
{
 chop $line; # remove the trailing linefeed
 ($last,$first,$telephone,$email) = split(/,/,$line);
 ($username,$domain) = split(/@/,$email);
 $dn = "uid=" . $username . ",dc=xyz,dc=com";
 #... do something ...
}

This code begins by reading an entire line, and then splits it into the various compo-
nents based on what you declared each of the four fields to represent. The code then
parses the email address into the username and domain components and uses the
username as part of the distinguished name.

Consider for a moment what you need to do in the “do something” block. If you
wanted to write an import file, you could simply write out the entry to LDIF. Other-
wise, you might decide to use Net::LDAP to write directly to the directory server.

Actually, Net::LDAP makes it easy to do things either way. Let’s replace the “do
something” comment with the following lines:

$entry = new Net::LDAP::Entry();
$entry->dn($dn);
$entry->add("sn",$last);
$entry->add("cn","$first $last");
$entry->add("givenName",$first);
$entry->add("uid",$username);
$entry->add("mail",$email);
$entry->add("telephoneNumber",$telephone);
$entry->add("objectclass",["top","person"]);
$ldif = new Net::LDAP::LDIF("-","w");

$ldif->write_entry($entry);
$ldif->done;

These lines insert the parsed values you read from the comma-separated file into an
entry object. You then use the write_entry() method available on the
Net::LDAP::LDIF class to print the entire entry in LDIF format. This LDIF out-
put can now easily be imported into a number of LDAP servers.

If you want to create an entry in an LDAP server directly from your script, it is just
as easy to add the following line instead of the previous LDIF-related code:

$conn->add($entry);

This line requires that the $conn variable be a reference to an open LDAP connec-
tion that is authenticated as a user with permission to add entries to the server.

The complete code appears in listing 8.1.
MIGRATION TO LDAP 153

use Net::LDAP;
use Net::LDAP::Entry;

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

while ($line = <>)
{
 chop $line; # remove the trailing linefeed
 ($last,$first,$telephone,$email) = split(/,/,$line);
 ($username,$domain) = split(/@/,$email);
 $dn = "uid=" . $username . ",dc=xyz,dc=com";
 $entry = new Net::LDAP::Entry();
 $entry->dn($dn);
 $entry->add("sn",$last);
 $entry->add("cn","$first $last");
 $entry->add("givenName",$first);
 $entry->add("uid",$username);
 $entry->add("mail",$email);
 $entry->add("telephoneNumber",$telephone);
 $entry->add("objectclass",["top","inetOrgPerson"]);
 $conn->add($entry);
}

8.4.2 Migrating from multiple sources

Imagine that you have a second table you would like to migrate with the table from
the previous section. For the sake of example, let’s use the following table. The first
field is the username, the second is a password, and the third is a full name:

bsmith,jump4joy,Robert Smith
jjohnson,hit1back,Joe Johnson

Here is the original table. We’ll call it the email table:

Smith,Bob,847-555-1212,bsmith@xyz.com
Johnson,Joe,815-555-1212,jjohnson@xyz.com

When presented with such a situation, it is often useful to begin by glancing at a few
records from each data source to find similarities. Doing so is helpful because you
need to be able to join the entries from both data sources into a single LDAP entry.
Looking at the example, it is apparent that the username is the same in both tables.
Note that although a full name is also present in both tables, it will not offer an exact
match in all cases—for example, Bob Smith is known as Robert Smith in the pass-
word database.

It is important to know that you have the same general information (full name)
available in both tables. Thus you need to make a decision about the authoritative data

Listing 8.1 migrate_table.pl
154 CHAPTER 8 MOVING INFORMATION

source. Picking the authoritative data source usually means picking the data that most
accurately reflects what needs to be stored in the LDAP entry.

Let’s say that after careful consideration, you determine that the email table most
accurately reflects the appropriate value for your common name attribute in LDAP. (It
may still be useful to store alternative names in another attribute that it can be searched
on.) Listing 8.2 shows the code to migrate these two tables.

use Net::LDAP;
use Net::LDAP::Entry;

$conn = new Net::LDAP::Conn("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

open(EMAILDB,"email.txt");
while ($line = <EMAILDB>)
{
 chop $line; # remove the trailing linefeed
 ($last,$first,$telephone,$email) = split(/,/,$line);
 ($username,$domain) = split(/@/,$email);
 $dn = "uid=" . $username . ",dc=xyz,dc=com";
 $entry = new Net::LDAP::Entry();
 $entry->dn($dn);
 $entry->add("sn",$last);
 $entry->add("cn","$first $last");
 $entry->add("givenName",$first);
 $entry->add("uid",$username);
 $entry->add("mail",$email);
 $entry->add("telephoneNumber",$telephone);
 $entry->add("objectclass", ["top","inetOrgPerson"]);
 $entries{$username} = $entry;
}
close (EMAILDB);

open(PASSDB,"password.txt");
while ($line = <PASSDB>) {
 chop $line;
 ($uid,$password,$name) = split(/,/,$line);
 $entry = $entries{$uid};
 $entry->add("userPassword",$password);
 $conn->add($entry);
}
close(PASSDB);

Understanding the code

As with all scripts using an LDAP server, you first connect to the server using appro-
priate credentials:

Listing 8.2 migrate_two.pl
MIGRATION TO LDAP 155

$conn = new Net::LDAP("myserver");
$conn->bind(dn=>"cn=Admin",password=>"password");

Next you open the first data file for reading. In this case, you begin with the email
database. After opening the file, you loop through each record:

open(EMAILDB,"email.txt");
while ($line = <EMAILDB>)
{

You parse the various fields from the line and derive the uid attribute from the email
address. Here you are also using the uid value as the entry’s RDN:

 chop $line; # remove the trailing linefeed
 ($last,$first,$telephone,$email) = split(/,/,$line);
 ($username,$domain) = split(/@/,$email);
 $dn = "uid=" . $username . ",dc=xyz,dc=com";

With all the fields parsed, you can now instantiate a new entry to hold all the
information:

 $entry = new Net::LDAP::Entry();
 $entry->dn($dn);
 $entry->add("sn",$last);
 $entry->add("cn","$first $last");
 $entry->add("givenName",$first);
 $entry->add("uid",$username);
 $entry->add("mail",$email);
 $entry->add("telephoneNumber",$telephone);
 $entry->add("objectclass",["top","inetOrgPerson"]);

Rather than store the entry directly, you instead put it into a hash using the username
as the key. Doing so allows you to add content from your second data store before
writing to the directory:

 $entries{$username} = $entry;
}

Now that processing is completed on the first data file, you close it and open the sec-
ond file:

close (EMAILDB);

open(PASSDB,"password.txt");
while ($line = <PASSDB>) {

Parsing this file is much easier, because you only care about the uid and password
fields. You also do not need to create a new distinguished name, because the base
entry has already been created:

 chop $line;
 ($uid,$password,$name) = split(/,/,$line);
156 CHAPTER 8 MOVING INFORMATION

You use the uid from the record to find an entry with a corresponding uid in the
hash. Once retrieved, you add only the userPassword attribute:

 $entry = $entries{$uid};
 $entry->add("userPassword",$password);

Because this is the last data store used to construct this record, you now add the entry.
If you had additional data stores, you would simply readd it to the hash:

 $conn->add($entry);
}
close(PASSDB);

You could have added the nicknames from the second data store to the user’s direc-
tory entry. Some organizations store multiple names for a user in the cn attribute,
but because value ordering cannot be guaranteed, doing so may cause the server to
return the alternative name to applications expecting a single name.

NOTE Active Directory defines an attribute called anl, or Alternative Name
Lookup. This attribute can be used to store alternative names, but it is not
supported by most LDAP vendors.

8.4.3 Adding new information to existing entries

Often, the purpose of migration is not to seed a new directory, but to add informa-
tion to existing entries. An example is a situation in which you would like to initialize
the passwords in the directory with information in another data source. In such cases,
you want to look at existing entries and update a subset of attributes that may or may
not already exist.

As when migrating from multiple sources, you first need to decide which attribute
you can use to link data in the two sources. This process is similar to the one that you
followed when combining rows from multiple tables in the last example.

Let’s change the previous example to read in the new information from a file. Then
you’ll read in the existing entry and change only those attributes for which the infor-
mation you’ve read can be considered authoritative.

Here is the table you will read. The first field is the userid, the second contains
the full name, the third contains a company affiliation, and the fourth contains the
user’s password:

johns,John Smith,XYZCorp,johnpassword
marthaj,Martha Jones,XYZCorp,marthapassword

Listing 8.3 shows how you can add new password information to existing entries on
the directory server.
MIGRATION TO LDAP 157

use Net::LDAP;

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

open (MYFILE,"inputfile");
while ($line = <MYFILE>)
{
 chop $line; # remove tailing linefeed
 ($userid,$name,$company,$password) = split(/,/,$line);
 $mesg = $conn->search(base=>"dc=xyz,dc=com",
 scope=>"sub",
 filter=>"(uid=$userid)");
 $entry = $mesg->entry(0);
 if (!$entry)
 {
 print "Warning: Entry '$userid' was not found.\n";
 } else {
 $entry->replace("userPassword",$password);
 $entry->update($conn);
 print "Updated Password for Entry '$userid'.\n";
 }
}
close (MYFILE);

Understanding the code

In this example, you make the (not always good) assumption that the userid in the
file is the same as an existing userid in the LDAP server. You don’t really care about
anything except the password:

use Net::LDAP;

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

open (MYFILE,"inputfile");
while ($line = <MYFILE>)
{
 chop $line; # remove tailing linefeed

Next, you parse out each of the components in the input line:

 ($userid,$name,$company,$password) = split(/,/,$line);

You perform a standard LDAP search to find the entry with a userid that matches the
one read from your input file:

 $mesg = $conn->search(base=>"dc=xyz,dc=com",
 scope=>"sub",
 filter=>"(uid=$userid)");
 $entry = $mesg->entry(0);

Listing 8.3 update_password.pl
158 CHAPTER 8 MOVING INFORMATION

If no entry matches, you print a warning and skip it. In some environments, this lack
of a match may be a more serious error that indicates the source data and the direc-
tory server are out of sync. In other environments, not all users in one data store exist
in another:

 if (!$entry)
 {
 print "Warning: Entry '$userid' was not found.\n";

If the entry is found, you replace the userPassword attribute with the password
from the file:

 } else {
 $entry->replace("userPassword",$password);

Once again, the entry is not updated on the server until the update() method is
called:

 $entry->update($conn);
 print "Updated Password for Entry '$userid'.\n";
 }
}
close (MYFILE);

Notice how you simply replace the value in the LDAP entry with the authoritative
values from your input file. No other attributes are affected.

8.5 JOINING RELATED INFORMATION

A common concept when integrating information between data repositories, such as
directories, is that of joining related information. The idea is that in the beginning,
parts of the whole exist in different repositories. In the simplest cases, the different
repositories share a common key that can be used to join those parts into the whole.
For example, if Linda Richards has accounts on both the mainframe and Unix with a
common login name of lrichards, it should be possible to join information from
each of those accounts by simply querying each repository and combining the results.

8.5.1 Multikey matches

In the perfect world, a common key would always exist in disparate data sources that
would allow you to easily join the related information contained in them. Unfortu-
nately, the situation is not always so ideal.

When a single key cannot be used to make an entry unique, you can sometimes
use two or more fields that by themselves would not offer a unique identity but that
together allow data from two or more sources to be joined. A common example in
everyday computing is the way an email address combines a local account name that
could never be unique across a billion Internet users with a fully qualified host name
that is registered and guaranteed to be globally unique. The example using fuzzy
matching in the next section shows the combining of name and department
JOINING RELATED INFORMATION 159

information in an attempt to use multiple criteria to join information in one reposi-
tory with another when the repositories don’t share a common key.

8.5.2 Fuzzy matching

Fuzzy matching means trying to join records based on the fact that they look like a
close match, although there may not be enough common information to make an
obvious match. Joining data this way has been the subject of much research, espe-
cially in the realm of data warehousing. Some companies sell products to do this sort
of thing with database tables. You will obviously not be able to match such sophisti-
cation, but we’ll demonstrate a basic technique that directory managers have used for
some time.

By looking at multiple fields, you can come up with a general probability that two
records refer to the same subject. For example, given a person’s name and department
number and the fact that a department in this example company has about 25 people,
you can say with relative certainty that if these two fields match, they have a high prob-
ability of being the same.

Here is an example of a data file that contains nonunique names. Because this sit-
uation is always a possibility, you need to use other fields to help match these records
to information in the LDAP-enabled directory:

Smith,Bob,847-555-1212,Sales
Johnson,Joe,815-555-1212,Development
Smith,Bob,815-555-9999,Development

Listing 8.4 shows how you can use fuzzy matching to join information in this table
with existing entries in the directory.

use Net::LDAP;
use Net::LDAP::Entry;

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

while($line = <>)
{
 chop $line;
 ($last,$first,$phone,$department) = split(/,/,$line);
 $mesg = $conn->search(base=>"dc=xyz,dc=com",scope=>"sub",
 filter=>"(&(department=$department)(cn=$first $last))");
 $entry = $mesg->entry(0);

 if (!$entry) {
 $entry = new Net::LDAP::Entry();
 $entry->dn("cn=$first $last,dc=xyz,dc=com");
 $entry->add("objectClass","organizationalPerson");
 $entry->add("cn","$first $last");
 $entry->add("sn",$last);

Listing 8.4 fuzzy_update.pl
160 CHAPTER 8 MOVING INFORMATION

 $entry->add("telephoneNumber",$phone);
 $entry->add("department",$department);
 $conn->add($entry);
 } else {
 $entry->replace("telephoneNumber",$phone);
 $entry->update($conn);
 }
}

Understanding the code

As usual, you begin by opening a connection to the server. In this case, you bind as an
administrator or other user with the privileges necessary to make changes:

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

while($line = <>)
{
 chop $line;
 ($last,$first,$phone,$department) = split(/,/,$line);

You attempt to match the name and department of an entry that already exists in
LDAP. By using both searches in your filter, you are more likely to avoid matching
entries that you shouldn’t:

 $mesg = $conn->search(base=>"dc=xyz,dc=com",scope=>"sub",
 filter=>"(&(department=$department)(cn=$first $last))");
 $entry = $mesg->entry(0);

If no entry is returned, the next if statement is true. You proceed to create a new
entry using the information in the file:

 if (!$entry) {
 $entry = new Net::LDAP::Entry();
 $entry->dn("cn=$first $last,dc=xyz,dc=com");
 $entry->add("objectClass","organizationalPerson");
 $entry->add("cn","$first $last");
 $entry->add("sn",$last);
 $entry->add("telephoneNumber",$phone);
 $entry->add("department",$department);
 $conn->add($entry);
 } else {

If an entry is returned, the name and department matched. The only other attribute
that is not guaranteed to be in sync is the telephone number, which you replace here:

 $entry->replace("telephoneNumber",$phone);
 $entry->update($conn);
 }
JOINING RELATED INFORMATION 161

There are two potential problems. First, if the department has changed, you might
not get a match when you want one. Second, if your department has two people with
the same name, you may match the wrong person.

Although this script works well if departments are relatively small and names are
the same between data sources, in a department with 1,000 employees and different
name representations, the probability of matching records that refer to different sub-
jects increases dramatically. Smarter processes will check the first name for potential
nicknames and other factors that will ensure a higher ratio of good matches.

8.6 SYNCHRONIZATION

The concept of synchronization is closely related to migration. Many of the tech-
niques for matching entries for migration also apply to synchronization. Unlike
migration, which generally happens only once, synchronization is a periodic process
of finding new changes and propagating them as necessary.

8.6.1 Synchronization to LDAP

When synchronizing, it is important to decide how best to determine whether entries
in your source data store have changed. If you look at the data source from the previ-
ous section, you see that this is not as simple as it may look at first:

Smith,Bob,847-555-1212,bsmith@xyz.com
Johnson,Joe,815-555-1212,jjohnson@xyz.com

Although you could easily delete old entries and rewrite them with the same process
used to migrate them in the first place, this approach is highly inefficient and has its
own problems. If you overwrite the information in the target directory with the data
in the previous table, you’ll have difficulty determining which entries in the table
have been deleted since the previous synchronization.

You can get around this issue by keeping a copy of the previous table and compar-
ing the contents with the current table to find those entries that have been deleted
since the last synchronization. In cases where synchronization is being done from data
sources (such as structured files) where this type of comparison is easy, this approach
can also be a simple way to determine which entries have changed, thus reducing the
number of directory operations needed to perform synchronization.

Another way to solve this problem is to keep a change log. Many directory servers
use this technique to keep track of entries that need to be replicated to other servers.
You can do this by trapping updates to the data store (using database triggers, for
example), or by logging changes with the tools used to make changes to the data.

Another approach to determine which entries to synchronize involves tagging each
row of data with a last-modified time:

Smith,Bob,847-555-1212,bsmith@xyz.com,199908231145
Johnson,Joe,815-555-1212,jjohnson@xyz.com,199908041830
162 CHAPTER 8 MOVING INFORMATION

By tagging the rows, you can easily check to see if the entry has changed since the last
time the information was synchronized.

8.6.2 Synchronization from LDAP

Synchronizing data from LDAP to another data source is similar to doing the reverse.
Synchronizing from LDAP to other repositories is important when an LDAP-enabled
directory will be an authoritative source of information but that information is also
needed in other legacy applications that do not natively support LDAP. However, the
way you locate changes and match rows with entries is somewhat different.

Many LDAP servers support an operational attribute called modifyTimestamp
that automatically reflects the last time an entry was changed. With such functionality
available, you can search on this attribute to find entries that have changed. Listing 8.5
shows how you can use this operational attribute to your advantage.

use Net::LDAP;

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

open (TIMEFILE,"lastrun.timestamp");
$lastrun = <TIMEFILE>;
chop $lastrun;
close TIMEFILE;

print "Last Run was " . $lastrun . ".\n";

$mesg = $conn->search(base=>"dc=xyz,dc=com",scope=>"sub",
 filter=>"(modifyTimestamp>=$lastrun)");
$count = $mesg->count;

for ($i = 0; $i < $count; $i++)
{
 $entry = $mesg->entry($i);
 $cn = $entry->get_value("cn");
 ($first,$last) = split(/ /,$cn);
 $phone = $entry->get_value("telephoneNumber");
 $email = $entry->get_value("mail");
 $row{$email} = "$last,$first,$phone,$email";
}

while ($line = <>)
{
 chop $line;
 ($last,$first,$phone,$email) = split(/,/,$line);
 if ($row{$email})
 {
 print $row{$email} . "\n";
 } else {
 print $line . "\n";
 }

Listing 8.5 sync_from_ldap.pl
SYNCHRONIZATION 163

}

($sec, $min, $hour, $day, $month, $year, @extra) = gmtime();
$month++;
if ($month < 10) {
 $month = "0" . $month;
}
if ($day < 10) {
 $day = "0" . $day;

}
if ($min < 10) {
 $min = "0" . $min;
}
if ($hour < 10) {
 $hour = "0" . $hour;
}
if ($sec < 10) {
 $sec = "0" + $sec;
}
$year = $year + 1900;

open (TIMEFILE,">lastrun.timestamp");
print TIMEFILE $year . $month . $day . $hour
 . $min . $sec . "Z\n";
close TIMEFILE;

Understanding the code

Again, you begin by using the proper module and opening a connection. You
need only authenticate as an entry with enough access to read the entries you
want to synchronize:

use Net::LDAP;

$conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"password");

Now you set the last time the script was run. You’ll read this information from a file
that is generated at the end of each run. The time stamp is in the form yyyymmddh-
hmmssZ, where yyyy is the year, mm is the month, dd is the date, and hhmm is the
hour and minutes. The trailing Z indicates that the time and date is in Universal
Time Coordinate (UTC), which is the same as Greenwich Mean Time (GMT):

open (TIMEFILE,"lastrun.timestamp");
$lastrun = <TIMEFILE>;
chop $lastrun;
close TIMEFILE;

print "Last Run was " . $lastrun . ".\n";

Next you perform a search for all time stamps larger than the one recorded at the end
of the last run:
164 CHAPTER 8 MOVING INFORMATION

$mesg = $conn->search(base=>"dc=xyz,dc=com",scope=>"sub",
 filter=>"(modifyTimestamp>=$lastrun)");
$count = $mesg->count;

You loop through each of the matching entries:

For ($i = 0; $i < $count; $i++) {
{

In this example, you retrieve the common name from the entry and split it in half to
get the first and last name. In most environments this step is not adequate, because
people often have middle names or generation qualifiers attached to their names that
also must be included:

 $entry = $mesg->entry($i);
 $cn = $entry->get_value("cn");
 ($first,$last) = split(/ /,$cn);

You retrieve the rest of the information you would like to synchronize using the stan-
dard getValue() method:

 $phone = $entry->get_value("telephoneNumber");
 $email = $entry->get_value("mail");

Because you have not yet read in your data file, you store this information in a hash in
memory, with the email address acting as the key. The value associated with the key is
a record in the format of the data file:

 $row{$email} = "$last,$first,$phone,$email";

Now that you’ve finished processing this entry, you advance to the next:

}

Once you have recorded your changes in the %row hash, you can read the input file
and substitute your changes:

while ($line = <>)
{
 chop $line;
 ($last,$first,$phone,$email) = split(/,/,$line);

After reading and parsing one line of input from the data file, you check to see if you
read any changed entries from LDAP with the same email address. If so, you print the
row from your %row hash:

 if ($row{$email})
 {
 print $row{$email} . "\n";

If the email address does not exist in the hash, no changes occurred, and you print the
original line from the data file:
SYNCHRONIZATION 165

 } else {
 print $line . "\n";
 }
}

Finally, before you exit, you need to print out a current time stamp:

($sec, $min, $hour, $day, $month, $year, @extra) = gmtime();
$month++;
if ($month < 10) {
 $month = "0" . $month;
}
if ($day < 10) {
 $day = "0" . $day;
}
if ($min < 10) {
 $min = "0" . $min;
}
if ($hour < 10) {
 $hour = "0" . $hour;
}
if ($sec < 10) {
 $sec = "0" + $sec;
}
$year = $year + 1900;

open (TIMEFILE,">lastrun.timestamp");
print TIMEFILE $year . $month . $day . $hour
 . $min . $sec . "Z\n";
close TIMEFILE;

Note that if the synchronization process takes a while, entries may be changed
between the time you perform your query and the time you write out the time stamp.
You can alleviate this situation by getting the time before the search, but doing so will
give you additional unwanted entries that were already returned. The real solution
may be to do an occasional full synchronization.

This script doesn’t give you the entries that have been deleted. Because deleted
entries are removed from the LDAP-enabled directory’s namespace, the situation
becomes more complicated. However, there are workable alternatives. The most com-
mon way to get around this issue is to avoid using the delete operation and instead use
a status attribute, such as employeeType. You change this attribute to deactivate the
entry. You can then perform a search on this attribute to find entries that have been
tagged for deletion. If you want to remove the entry, the synchronization script can
perform the deletion from both sources.

8.6.3 Bidirectional synchronization

Bidirectional synchronization requires more consideration than any other type. It
must deal with many issues in addition to the usual problems associated with trying
to match a row of data with a particular entry, or entries with different names.
166 CHAPTER 8 MOVING INFORMATION

Bidirectional synchronization is generally most important when multiple active data
repositories are being used and each is authoritative for part of the data. Synchroniza-
tion is done to bring authoritative information to each of the nonauthoritative data
repositories. In instances where multiple repositories are authoritative for the same
attribute, bidirectional synchronization must determine which changes to propagate.

Needless to say, one of the most important issues that must be resolved is how to
handle data mastering. In unidirectional replication, data is always mastered in one
location and copied to another. With bidirectional data flow, you must be conscious
of which location masters each piece of data.

An even more complicated situation exists when data must be mastered in multi-
ple locations, because special types of conflicts may occur. The most important of
these conflicts arises when two different data stores get updates to the same entry at
about the same time. Depending on the process used for synchronization, one or
both sources may end up containing improper information. Directories that support
multimaster replication avoid this issue by using change sequence numbers that con-
tain time and other information that lets you determine the order in which changes
were applied.

However, in an environment where the data sources being synchronized are not of
the same type, it is unlikely that a similar type of technique will be as effective. In such
environments, it is best to either avoid multimastering of data completely, or set one
of the sources to be more authoritative than the others for any information that would
be adversely impacted in these types of situations.

8.7 SUMMARY

In this chapter, you learned about the three basic approaches to managing data flow
across multiple data stores. You need to understand issues such as the authoritative
sources and existing schemas before you can be successful at keeping your directory
information up to date. Unlike chapter 7, which focused on manual data manage-
ment, this chapter examined scripted approaches to automate as much of the direc-
tory information management process as possible.

Additionally, we presented several examples of tactical solutions to common syn-
chronization and migration issues. These examples showed how to move information
between databases and directories, as well as how to generate and search using direc-
tory time stamps.

In chapter 9, we move from discussing directory information management to look-
ing at management and monitoring of operational information within the directory.
SUMMARY 167

C H A P T E R 9

Accessing operational
information in LDAP

9.1 Getting server information 169
9.2 Monitoring with LDAP 178
9.3 Testing replication 181
9.4 Summary 184
Until now, this part of the book has focused on managing the information that
resides in an LDAP-enabled directory. At this point, we will shift our focus to manag-
ing the server itself.

Not all of the techniques described in this chapter will work in all directories. Infor-
mation given with each example specifies its requirements.

By the end of this chapter, we will have discussed topics that give you answers to
the following questions:

• How do you get server information, such as schemas and available naming con-
texts, in a programmatic way?

• What is the best way to monitor the server?

• How should the server’s replication with other servers best be monitored?
168

9.1 GETTING SERVER INFORMATION

If you want to write an application that accesses only a single LDAP server within a
predefined environment, you can make assumptions about the server’s schema and
namespace. However, in many real-world situations, you can’t make these assump-
tions. Instead, you ask the server to tell you about its environment and use its
response as a guide for accessing it. In this section, we will look at how to use
Net::LDAP (introduced in chapter 6) to get this information from the server.

9.1.1 Retrieving available root naming contexts

Before you can use an LDAP server, you need to know the available root naming con-
texts. Based on information in chapter 3, you know that the root naming context is
the top level of the directory. Knowing this helps you determine automatically what
you might set a default search base to within your applications. What better way to get
started than by looking at a program that can query the server for this information?

The information is contained in an entry at the root of the directory tree. You can
get it just as you get any other information from the server—by performing a search.
Listing 9.1 shows this particular search. You use the search base of an empty string, a
base scope, and a presence filter for the objectclass attribute.

use Net::LDAP;

$conn = new Net::LDAP("localhost");

$mesg = $conn->search(base=>"", scope=>"base",
 filter=>"(objectclass=*)");
$entry = $mesg->entry(0);

if ($entry)
{
 $ldif = new Net::LDAP::LDIF("-","w");
 $ldif->write_entry($entry);
 $ldif->done;
}
$conn->unbind;

Understanding the code

As usual, you begin by including the Net::LDAP module:

use Net::LDAP;

Next, you open the connection to the server. Be sure to change the parameters if you
do not want to aim your requests at an LDAP server running on your local machine:

$conn = new Net::LDAP("localhost");

Listing 9.1 get_root.pl
GETTING SERVER INFORMATION 169

Now you perform a search on the directory’s root entry (""):

$mesg = $conn->search(base=>"", scope=>"base",
 filter=>"(objectclass=*)");
$entry = $mesg->entry(0);

As discussed in chapters 4 and 6, only one entry can be returned on a base scope
search. You print the entry’s contents now and close the connection:

if ($entry)
{
 $ldif = new Net::LDAP::LDIF("-","w");
 $ldif->write_entry($entry);
 $ldif->done;
}
$conn->unbind;

The output of listing 9.1 actually gives you more information than you need. If you
scan through the output, you’ll notice an attribute type called namingContext.
The value or values associated with this attribute type should give you a good picture
of the top-level namespace provided by the server you queried.

9.1.2 Extracting object class information

Getting schema information is a little more complex than simply retrieving naming
context information, because schema information is stored in the directory in a struc-
tured format that must be parsed. Recall from chapter 2 that schema information
consists of syntax, object class definitions, and attribute type definitions.

Listing 9.2 demonstrates how to extract information about object classes from
the server.

use Net::LDAP;

my $conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"manager");

my $mesg = $conn->search(base=>"cn=schema",scope=>"base",
 filter=>"(objectclass=*)");
my $entry = $mesg->entry(0);

if (!$entry)
{
 print "Sorry, this server doesn't support schema discovery.\n";
 exit;
}

my @objectclasses = $entry->get_value{"objectclasses"}};

foreach my $oc (@objectclasses)
{
 my ($name, $desc, $sup, $must, $may, @must, @may, $match);

Listing 9.2 print_oclass_def.pl
170 CHAPTER 9 ACCESSING OPERATIONAL INFORMATION IN LDAP

 if ($oc =~ /NAME '(.+)' DESC '(.*)'/)
 {
 $name = $1;
 if ($2 =~ /\w+/)
 {
 $desc = $2;
 }
 }

 if (grep (/^$name$/i,@ARGV))
 {
 $match = 1;

 if ($oc =~ /SUP (\w+)/)
 {
 $sup = $1;
 }

 if ($oc =~ /MUST [\(']+([$ \w]+)[\)']+/ ||
 $oc =~ /MUST (\w+)/)
 {
 $must = $1;
 $must =~ s/ //g;
 @must = split(/\$/,$must);
 }

 if ($oc =~ /MAY [\(']+([$ \w]+)[\)']+/ ||
 $oc =~ /MAY (\w+)/)
 {
 $may = $1;
 $may =~ s/ //g;
 @may = split(/\$/,$may);
 }
 }

 print "Name:\t$name\n" if ($match || $#ARGV < 0);
 print "Desc:\t$desc\n" if $desc;
 print "Sup:\t$sup\n" if $sup;
 print "Must:\t" . join("\n\t",@must) . "\n" if @must;
 print "May:\t" . join("\n\t",@may) . "\n" if @may;
 print "\n" if ($match);
}

$conn->close;

Understanding the code

First you open a connection to the LDAP server:

use Net::LDAP;

my $conn = new Net::LDAP("localhost");
$conn->bind(dn=>"cn=Admin",password=>"manager");
GETTING SERVER INFORMATION 171

Now you read the entry at cn=schema. If no entry is returned, the server probably
doesn’t support schema discovery:

my $mesg = $conn->search(base=>"cn=schema",scope=>"base",
 filter=>"(objectclass=*)");
my $entry = $mesg->entry(0);

if (!$entry)
{
 print "Sorry, this server doesn't support schema discovery.\n";
 exit;
}

The objectclasses attribute that is returned should be multivalued. Each value
defines a single object class in the standard format detailed in chapter 1. You put
these values into an array called @objectclasses. The foreach loop then cycles
through each value so you can parse them out into a format that you can read with-
out going blind from all the parentheses. You also declare a few of the variables you’ll
need as you parse a single object class definition:

my @objectclasses = $entry->get_value{"objectclasses"}};

foreach my $oc (@objectclasses)
{
 my ($name, $desc, $sup, $must, $may, @must, @may, $match);

In this program, you don’t really care about the OID associated with the object class.
You therefore begin by snatching the object class’s name and description. You do this
with a few Perl regular expressions:

 if ($oc =~ /NAME '(.+)' DESC '(.*)'/)
 {
 $name = $1;

 if ($2 =~ /\w+/)
 {
 $desc = $2;
 }
 }

You make this program a little fancy by allowing the person executing it to specify a
list of object classes to be returned. Thus if you only want to see the definition for
organization, you simply specify that when you execute the script. The grep
expression tries to find the current object class in the list of arguments that you passed
to the script:

 if (grep (/^$name$/i,@ARGV))
 {
 $match = 1;

If the current object class is one for which you want details, you parse out the supe-
rior class and the required and permitted attributes in the definition. Once again, this
172 CHAPTER 9 ACCESSING OPERATIONAL INFORMATION IN LDAP

is done with Perl regular expressions. This first segment finds any object class superior
to this one:

 if ($oc =~ /SUP (\w+)/)
 {
 $sup = $1;
 }

Required attributes are specified by the MUST keyword. You parse these out and add
them to a list. When parsing MUST and MAY, you need to take into account that each
may be single or multivalued:

 if ($oc =~ /MUST [\(']+([$ \w]+)[\)']+/ ||
 $oc =~ /MUST (\w+)/)
 {
 $must = $1;
 $must =~ s/ //g;
 @must = split(/\$/,$must);
 }

The next segment of code parses out the optional attributes from the definition by
looking for the MAY keyword:

 if ($oc =~ /MAY [\(']+([$ \w]+)[\)']+/ ||
 $oc =~ /MAY (\w+)/)
 {
 $may = $1;
 $may =~ s/ //g;
 @may = split(/\$/,$may);
 }
 }

Now that you’ve completely parsed the line, you can do something useful, like print it
in a human-readable format:

 print "Name:\t$name\n" if ($match || $#ARGV < 0);
 print "Desc:\t$desc\n" if $desc;
 print "Sup:\t$sup\n" if $sup;
 print "Must:\t" . join("\n\t",@must) . "\n" if @must;
 print "May:\t" . join("\n\t",@may) . "\n" if @may;
 print "\n" if ($match);
}

$conn->close;

Using this code, you can take cryptic definitions from an LDAP server and generate
human-readable output. You could also use this same code as the basis for generating
other types of output, such as XML/DSML or HTML.
GETTING SERVER INFORMATION 173

9.1.3 Getting attribute type details

Being able to dynamically determine which object classes a server supports is pretty
cool. It’s almost as cool as knowing the syntax and other details of the attribute types
of those object classes. You’ll find that information in this section.

Listing 9.3 shows the code for getting attribute type definitions.

use Net::LDAP;

my $conn = new Net::LDAP("localhost");

my $mesg = $conn->search(base=>"cn=schema",scope=>"base",
 filter=>"(objectclass=*)");
my $entry = $mesg->entry(0);

if (!$entry)
{
 print "Sorry, this server doesn't support schema discovery.\n";
 exit;
}

my @ldapsyntaxes = $entry->get_value("ldapsyntaxes"};

my (%syntaxes,%rules);

foreach my $ls (@ldapsyntaxes)
{
 $ls =~ /\(([0-9\.]+) DESC '(.+)'/;
 $syntaxes{$1} = $2;
}

my @matchingrules = $entry->get_value("matchingrules"};

foreach my $mr (@matchingrules)

{
 $mr =~ /\(([0-9\.]+) NAME '(.+)'/;
 $rules{$1} = $2;
}

my @attributetypes = $entry->get_value(attributetypes"};

foreach my $at (@attributetypes)
{
 my ($name,$desc,$sup,$syntax,$equality,$match,@name,$one_name);

 if ($at =~ /NAME '(\w+)'/ ||
 $at =~ /NAME \(([\w\;_\-\']+) \)/)
 {
 $name = $1;
 $name =~ s/'//g;
 @name = split(/ /,$name);
 }

 foreach $one_name (@name)
 {

Listing 9.3 print_atype_def.pl
174 CHAPTER 9 ACCESSING OPERATIONAL INFORMATION IN LDAP

 if (grep (/^one_name/i,@ARGV))
 {
 $match = 1;
 }
 }

 if ($match)
 {
 if ($at =~ /DESC '(.+)'/)

 {
 if ($1 =~ /\w+/)
 {
 $desc = $1;
 }
 }

 if ($at =~ /SYNTAX ([0-9\.]+)/)
 {
 $syntax = $1;
 }

 if ($at =~ /EQUALITY ([0-9\.]+)/)
 {
 $equality = $1;
 }
 }

 print "Name:\t\t$name\n" if ($match || $#ARGV < 0 && $name);
 print "Desc:\t\t$desc\n" if $desc;
 print "Syntax:\t\t" . $syntaxes{$syntax} . "\n" if $syntax;
 print "Equality:\t" . $rules{$equality} . "\n" if $equality;
 print "\n" if ($match);
}

$conn->close;

Understanding the code

Your first order of business is opening a connection to the LDAP server:

use Net::LDAP;

my $conn = new Net::LDAP("localhost");

As in the previous example, you do a search on the cn=schema entry. This entry
normally holds all schema information:

my $mesg = $conn->search(base=>"cn=schema",scope=>"base",
 filter=>"(objectclass=*)");
my $entry = $mesg->entry(0);

If no entry is returned, the server you queried does not support schema discovery, or
perhaps the entry is located elsewhere in the directory tree:
GETTING SERVER INFORMATION 175

if (!$entry)
{
 print "Sorry, this server doesn't support schema discovery.\n";
 exit;
}

Before you rush for the attribute type definitions, you want to get the list of sup-
ported syntaxes from the server. Otherwise you’ll only be able to display the OID for
the syntaxes later in the program:

my @ldapsyntaxes = $entry->get_value("ldapsyntaxes"};

my (%syntaxes,%rules);

foreach my $ls (@ldapsyntaxes)
{
 $ls =~ /\(([0-9\.]+) DESC '(.+)'/;
 $syntaxes{$1} = $2;
}

Similarly, you need to find the matching rules supported by this server. The server
uses the matching rules to find attributes within an entry that match particular
search filters:

my @matchingrules = $entry->get_value("matchingrules"};

foreach my $mr (@matchingrules)
{
 $mr =~ /\(([0-9\.]+) NAME '(.+)'/;
 $rules{$1} = $2;
}

Finally, you get around to retrieving the multivalued attributetypes attribute
from this entry. The format of this attribute is the same one mentioned in chapter 2
and defined in the LDAP standards:

my @attributetypes = $entry->get_value(attributetypes"};

foreach my $at (@attributetypes)
{
 my ($name,$desc,$sup,$syntax,$equality,$match,@name,$one_name);

Next, you basically do the same thing you did in the object class example (listing 9.2).
The method for matching command-line arguments is a little more sophisticated
because an attribute can have multiple names:

 if ($at =~ /NAME '(\w+)'/ ||
 $at =~ /NAME \(([\w\;_\-\']+) \)/)
 {
 $name = $1;
 $name =~ s/'//g;
 @name = split(/ /,$name);
 }
176 CHAPTER 9 ACCESSING OPERATIONAL INFORMATION IN LDAP

 foreach $one_name (@name)
 {
 if (grep (/^one_name/i,@ARGV))
 {
 $match = 1;
 }
 }

 if ($match)

 {

If match is true, you parse this attribute type. Let’s begin with the long description,
if the type has one defined:

 if ($at =~ /DESC '(.+)'/)
 {
 if ($1 =~ /\w+/)
 {
 $desc = $1;
 }
 }

The SYNTAX keyword marks the start of the syntax this attribute type follows. The
format of the syntax is its dot-separated OID:

 if ($at =~ /SYNTAX ([0-9\.]+)/)
 {
 $syntax = $1;
 }

In this script you also parse out the EQUALITY matching rules that apply to this
type. Other matching rules may exist, but this should give you a good idea how pars-
ing can be done:

 if ($at =~ /EQUALITY ([0-9\.]+)/)
 {
 $equality = $1;
 }
 }

Everything is parsed, so it is now simply a matter of doing something with all this
information. In this example, you print it to standard output:

 print "Name:\t\t$name\n" if ($match || $#ARGV < 0 && $name);
 print "Desc:\t\t$desc\n" if $desc;
 print "Syntax:\t\t" . $syntaxes{$syntax} . "\n" if $syntax;
 print "Equality:\t" . $rules{$equality} . "\n" if $equality;
 print "\n" if ($match);
}

$conn->close;
GETTING SERVER INFORMATION 177

Combined with the previous example for object classes (listing 9.2), you could
easily change this code to output HTML or other formats to provide a simple
schema browser.

9.2 MONITORING WITH LDAP

Many servers offer information about the LDAP server through a special read-only
LDAP entry, usually called cn=monitor. It is possible to get both the monitor dis-
tinguished name and entry with Net::LDAP. Such information can easily be used to
watch a server over a period of time; doing so will let you adopt proactive measures to
correct any potential problems.

NOTE The examples in this section cannot be used with Microsoft Active Direc-
tory, because the monitor entry used in this example is not a standard.
Rather, it’s a convention followed by a number of LDAP vendors.

Let’s look at some examples of how you can script this kind of activity.

9.2.1 Getting the monitor’s name

Rather than assume the monitor’s distinguished name is cn=monitor, new servers
include information in the root that will give you this information. As in listing 9.1,
you look into the server’s root entry to find the location of the monitor entry.

Let’s begin by opening a connection to the server and searching for the root entry:

my $conn = new Net::LDAP("localhost");

my $mesg = $conn->search(base=>"",scope=>"base",
 filter=>"objectclass=*");
my $entry = $mesg->entry(0);

If the entry doesn’t exist, you use a default of cn=monitor, which exists on
many servers:

if (!$entry) {
 $monitordn = "cn=monitor";
} else {
 $monitordn = $entry->get_value("monitor");
}

Once the monitor entry is found or set, you can begin to retrieve some of the server’s
basic operational information.

9.2.2 Reading the monitor information

So far, you’ve retrieved the monitor’s distinguished name. It’s time to put that infor-
mation to good use. If you had simply listed the contents of the monitor entry, it
might look something like this:

dn: cn=monitor
objectclass: top
objectclass: extensibleObject
178 CHAPTER 9 ACCESSING OPERATIONAL INFORMATION IN LDAP

cn: monitor
version: Netscape-Directory/4.13 B01.023.0000
threads: 20
connection: 576:20010713172253Z:2:1::cn=Directory Manager
currentconnections: 1
totalconnections: 1
dtablesize: 2003
readwaiters: 0

opsinitiated: 2
opscompleted: 1
entriessent: 0
bytessent: 14
currenttime: 20010713172253Z
starttime: 20010712012437Z
nbackends: 1
dataversion: cdonley-t21.:31389 020010712012436 0
ldapserverconfigdn: cn=ldap://:31389,dc=cdonley-t21,dc=
backendmonitordn: cn=monitor,cn=ldbm

Instead of dumping information, you will retrieve important information and use it
to determine whether to generate an alert. Listing 9.4 offers a basic example that
reads the monitor information from the server once and reports when the number of
concurrent connections exceeds 100.

use Net::LDAP;

my $conn = new Net::LDAP("localhost");

my $entry = $conn->search(base=>"",scope=>"base",
 filter=>"(objectclass=*)");

my $monitordn;

if (!$entry) {
 $monitordn = "cn=monitor";
} else {
 $monitordn = $entry->{"monitor"}[0];
}

$mesg = $conn->search(base=>$monitordn,scope=>"base",
 Filter=>"objectclass=*");
my $monitor_entry = $mesg->entry(0);

print "Connections: " .
 $monitor_entry->get_value("connections") . "\n";

if ($monitor_entry->get_value("connections") > 100) {
 print "Warning: More than 100 concurrent connections.\n";
}

Listing 9.4 get_monitor.pl
MONITORING WITH LDAP 179

Understanding the code

After doing basic setup, the code needs to read the monitor once and spew out
its contents:

$mesg = $conn->search(base=>$monitordn,scope=>"base",
 filter=>"(objectclass=*)");
my $monitor_entry = $mesg->entry(0);

my $ldif = new Net::LDAP::LDIF("-","w");
$ldif->write_entry($monitor_entry);
$ldif->done;

Pretty easy, eh? This code gives output similar to the dump of cn=monitor shown
earlier in this section. However, because you’re considering doing some automated
monitoring, perhaps you should output only the attribute you care about in a way
that can be easily evaluated. You can look at the number of connections and print that
information to the standard output. Simply replace the three previous lines as follows:

$mesg = $conn->search(base=>$monitordn,scope=>"base",
 filter=>"objectclass=*");
my $monitor_entry = $mesg->entry(0);

print "Connections: " .
 $monitor_entry->get_value("connections") . "\n";

Or, simpler yet, you can have the program print an alarm if the connection count is
over 100. Here you replace the last print statement with an expression to perform
this evaluation:

if ($monitor_entry->get_value("connections") > 100) {
 print "Warning: More than 100 concurrent connections.\n";
}

9.2.3 Polling the monitor entry

Now let’s see how you can vary your approach. You will either query the monitor
once each time your script is run, as shown previously, or poll the monitor at a speci-
fied interval from within the script. In the latter case, you can wrap the core of the
previous example within a while loop with a wait between queries (see listing 9.5).

use Net::LDAP;

my $conn = new Net::LDAP("localhost");

my $entry = $conn->search(base=>"",scope=>"base",
 filter=>"(objectclass=*)");

my $monitordn;

if (!$entry) {
 $monitordn = "cn=monitor";
} else {

Listing 9.5 poll_monitor.pl
180 CHAPTER 9 ACCESSING OPERATIONAL INFORMATION IN LDAP

 $monitordn = $entry->{"monitor"}[0];
}

while (1) {

 $mesg = $conn->search(base=>$monitordn,scope=>"base",
 filter=>"objectclass=*");
 my $monitor_entry = $mesg->entry(0);

 print "Connections: " .

 $monitor_entry->get_value("connections") . "\n";

 if ($monitor_entry->get_value("connections") > 100) {
 print "Warning: More than 100 concurrent connections.\n";
 }
 sleep 30;

}

The bolded lines in listing 9.5 show how you can add this polling capability to the
previous example. When run, the program will continue forever, checking the moni-
tor entry every 30 seconds.

9.3 TESTING REPLICATION

In chapter 8, we discussed synchronization and migration techniques. We also men-
tioned replication, although each LDAP implementation handles it differently.

It is possible to test replication in a generic fashion through the use of a synthetic
transaction. To test whether entries are being replicated on another server, you gen-
erate a dummy entry and store it on the master. After waiting a specified time period
for replication, you query all the replicas to see if the change made it.

This approach allows you to ensure that replication takes place within an accept-
able window of time. Such tests are important in an environment where password and
policy changes must be propagated quickly to allow for proper application behavior.

Listing 9.6 shows a script that can perform this type of basic replication monitoring.

use Net::LDAP;
use Net::LDAP::Entry;

@replicas = ("server-a","server-b","server-c");

$master = "masterhostname";

$conn = new Net::LDAP($master_name);
$conn->bind(dn=>"cn=Admin",password=>"password");

$testentry_name =
 "cn=Sam Jones, ou=Test Branch, dc=domain, dc=com";

$master->delete($testentry_name);

$testentry = new Net::LDAP::Entry();

Listing 9.6 test_replication.pl
TESTING REPLICATION 181

$testentry->dn($testentry_name);
$testentry->add("objectclass","inetOrgPerson");
$testentry->add("cn","Sam Jones");
$testentry->add("sn","Jones");

$conn->add($testentry);

sleep 10;

for ($i = 1; $i <= $#replicas; $i++) {
 $replica_name = $replicas[$i];
 $replica = new Net::LDAP($replica_name);

 $mesg = $replica->search(base=>$testentry_name,scope=>"base",
 filter=>"(objectclass=*)");
 $entry = $mesg->entry(0);

 if (!$entry) {
 print "$replica_name FAILED!\n";
 } else {
 print "$replica_name PASSED!\n";
 }
 $replica->unbind();
}

$conn->delete($testentry_name);

$conn->unbind();

Understanding the code

In the first few lines, you define the list of replicas and the name of your master server:

@replicas = ("server-a","server-b","server-c");
$master = "masterhostname";

Next you open a connection to the master server using an account with sufficient
privileges to add an entry to the directory:

$conn = new Net::LDAP($master_name);
$conn->bind(dn=>"cn=Admin",password=>"password");

The entry you add should not be put in a branch of the directory tree that contains
live data. It should, however, be in a branch of the tree that is part of the replica-
tion agreement:

$testentry_name =
 "cn=Sam Jones, ou=Test Branch, dc=domain, dc=com";

Before adding the entry to the server, you should first delete the entry if it already
exists. It shouldn’t exist, but there is the possibility that the script or final delete oper-
ation failed in a previous run:

$master->delete($testentry_name);
182 CHAPTER 9 ACCESSING OPERATIONAL INFORMATION IN LDAP

Now you create a dummy entry with the minimum amount of information. You may
also want to add an additional attribute for use as a time stamp. Such a time stamp
will ensure that you are looking at the same version of the entry:

$testentry = new Net::LDAP::Entry();
$testentry->dn($testentry_name);
$testentry->add("objectclass","inetOrgPerson");
$testentry->add("cn","Sam Jones");

$testentry->add("sn","Jones");

Finally, you add the entry to the directory server and wait a bit for replication to take
place. The sleep function waits for the number of seconds you specify. In this case,
you wait 10 seconds:

$conn->add($testentry);

sleep 10;

After this wait, you are ready to search each of your replicas. You begin by looping
through each replica and opening a connection:

for ($i = 0; $i <= $#replicas; $i++) {
 $replica_name = $replicas[$i];
 $replica = new Net::LDAP($replica_name);

Using a search scope of base and the test entry’s name as the search base, you do a
simple search in an attempt to retrieve the entry.

 $mesg = $replica->search(base=>$testentry_name,scope=>"base",
 filter=>"(objectclass=*)");
 $entry = $mesg->entry(0);

If the entry doesn’t exist, replication has not yet taken place and there may be a prob-
lem. If it does exist, the test has passed:

 if (!$entry) {
 print "$replica_name FAILED!\n";
 } else {
 print "$replica_name PASSED!\n";
 }

You are finished with this replica, so you unbind from it and continue to the next:

 $replica->unbind();
}

At the end of the test, you need to delete the entry from the master and unbind.
Doing so ensures that the directory is in a good state to run this test again:

$conn->delete($testentry_name);

$conn->unbind();
TESTING REPLICATION 183

9.4 SUMMARY

You can easily access important operational information with many commercial
LDAP servers. All LDAPv3-compliant directory servers offer the ability to access
server information, including available schemas and root-naming contexts, via the
LDAP protocol. This ability is important in creating tools that can work from server
to server without significant changes. In this chapter, we looked at examples for
retrieving the naming context, extracting object class information, and getting
attribute definitions.

Many servers also offer the ability to monitor activity via LDAP. We looked at a
few examples of getting and reading monitor information.

In a multiserver environment, it is often important to go beyond what the server
provides and perform synthetic transactions to test the entire directory environment.
We discussed how to test the replication process.

Chapter 10 will move from discussing operational information to showcasing
detailed information about DSML and its use from Perl. The chapter will allow you
to tie together the information you’ve picked up so far with an emerging new standard
for representing and sharing directory information.
184 CHAPTER 9 ACCESSING OPERATIONAL INFORMATION IN LDAP

C H A P T E R 1 0

DSML:
getting under the hood

10.1 DSML parsing with SAX 186
10.2 Parsing DSML into a Perl object 190
10.3 Generating DSML 196
10.4 Using Perl to convert DSML with XSLT 208
10.5 Summary 211
In chapter 5, we took a first look at DSML and how it can be used as an interchange
format. This chapter examines DSML in more detail, providing a deeper view into
how you can use DSML programmatically from Perl.

At the end of this chapter, you will better understand the answers to the following
questions:

• How can DSML be parsed using the Simple API for XML (SAX)?

• What is the best way to create DSML documents?

• How can DSML be transformed using other standards, such as XSLT?
185

10.1 DSML PARSING WITH SAX

In chapter 5, you saw what DSML looks like. Now we will explore how to formulate a
strategy for working with DSML documents.

If you are familiar with Perl, your first thought may be to use regular expressions
to parse out elements, attributes, and characters. Although this approach is possible,
you will be on a path toward reinventing the wheel.

In addition to a Perl module called XML::Parser, which will help you parse your
XML documents, there are two standard APIs that are well documented and easy to
use. One API DOM), is a full-featured interface for dealing with entire documents.
The other API is SAX, which is useful for parsing most XML documents.

Both of these APIs are available in many development environments, including
Perl, C, and Java. Their use in these environments is identical in many ways. In this
chapter, we will deal exclusively with the Perl version of the SAX API, which can be
found on the Comprehensive Perl Archive Network (CPAN; http://www.cpan.org/)
in the libxml-perl package.

10.1.1 Basics of parsing XML with SAX

PerlSAX, as the SAX parser for Perl is known, may seem relatively useless out of the
box. In fact, given a document implementing DSML or other XML document types,
PerlSAX does little more than tell you whether the document has structural problems,
such as improper element nesting. Looking beyond its simplicity, the important thing
about PerlSAX is it allows you to create custom handlers that can perform whatever
operations are necessary to use XML elements within a particular application.

10.1.2 A simple XML parser handler

The handler in listing 10.1 takes input from the PerlSAX parser and prints the name
and attribute of each new element, any character data, and the name of each end-
ing element.

package SimpleHandler;

sub new {
 my ($type) = @_;
 return bless {}, $type;
}

sub start_element {
 my ($self, $element) = @_;

 print "Start Element: " . $element->{Name} . "\n";

 my %attr_hash = %{$element->{Attributes}};

 foreach my $attr (keys %attr_hash)
 {

Listing 10.1 SimpleHandler.pm
186 CHAPTER 10 DSML: GETTING UNDER THE HOOD

 print "Attribute: " . $attr .
 " = " . $attr_hash{$attr} . "\n";
 }
}

sub end_element {
 my ($self, $element) = @_;

 print "End element: $element->{Name}\n";

}

sub characters {
 my ($self, $characters) = @_;

 print "Characters: $characters->{Data}\n";
}

1;

Understanding the code

The package directive allows you to start a new Perl class:

package SimpleHandler;

The new() method creates a new object that is an instance of the SimpleHandler
Perl class. You do not initialize any other structures:

sub new {
 my ($type) = @_;
 return bless {}, $type;
}

The variable $element is a hash reference containing the information about a
new element. It is passed in by the SAX parser whenever the parser encounters a
new element:

sub start_element {
 my ($self, $element) = @_;

In the next line, you simply print the name of the new element:

 print "Start Element: " . $element->{Name} . "\n";

The Attributes key of the $element hash reference includes a hash reference
containing all the attributes associated with this element. As we will discuss shortly,
XML attributes are different from LDAP attributes. The start_element()
method is called by the parser whenever it sees a new element. As we already men-
tioned, the variable $element is a hash reference that contains two keys: Name and
Attributes. The following code simply prints the name of each new element and
cycles through and prints the attributes it contains:
DSML PARSING WITH SAX 187

 my %attr_hash = %{$element->{Attributes}};

 foreach my $attr (keys %attr_hash)
 {
 print "Attribute: " . $attr .
 " = " . $attr_hash{$attr} . "\n";
 }
}

The end_element() method is called when the parser meets a closing tag for a
particular element—</dsml:dsml>, for example. The $element variable’s Name
key tells you which element has ended:

sub end_element {
 my ($self, $element) = @_;

 print "End element: $element->{Name}\n";
}

In this handler, you print the name of the element that ends:

sub characters {
 my ($self, $characters) = @_;

 print "Characters: $characters->{Data}\n";
}

The parser uses the character() method in your handler whenever characters are
found outside angle brackets. The text can be found in the passed hash reference
under the Data key. For example, in the janet.xml file you created in chapter 5, the
text Janet Smith found between the start and end tags for the dsml:value element
would be sent here.

In order to complete this package, you return a positive result in the main portion
of your package outside the various subroutines:

1;

10.1.3 Parsing a simple document

Before you can use the SimpleHandler class created in the previous section, you
need to create a program to call the SAX parser; listing 10.2 shows such a program.
The parser also needs to know that it should use your particular handler.

use XML::Parser::PerlSAX;
use SimpleHandler;

my $handler = new SimpleHandler;

my $parser = new XML::Parser::PerlSAX(Handler => $handler);

my $xmlfile = $ARGV[0];
$parser->parse(Source => { SystemId => $xmlfile });

Listing 10.2 SimpleHandler.pl
188 CHAPTER 10 DSML: GETTING UNDER THE HOOD

First you use both the SAX parser and your simple handler:

use XML::Parser::PerlSAX;
use SimpleHandler;

Next you create a new instance of the SimpleHandler class created in the previous
example as well as an instance of the PerlSAX parser that knows to use your handler:

my $handler = new SimpleHandler;

my $parser = new XML::Parser::PerlSAX(Handler => $handler);

You can now invoke the parse() method on the PerlSAX parser. In this example,
you have it read the first argument passed to your program ($ARGV[0]):

my $xmlfile = $ARGV[0];
$parser->parse(Source => { SystemId => $xmlfile });

If you now run this program, giving it the path to your janet.xml file, you should see
the following output:

Start Element: dsml:dsml
Attribute: xmlns:dsml = http://www.dsml.org/DSML
Characters:

Characters:
Start Element: dsml:directory-entries
Characters:

Characters:
Start Element: dsml:entry
Attribute: dn = cn=Janet Smith,dc=xyz,dc=com
Characters:

Characters:
Start Element: dsml:objectclass
Characters:

Characters:
Start Element: dsml:oc-value
Characters: top
End element: dsml:oc-value
Characters:

The output will continue through the end of the file if everything works. Remember
that the Attribute lines in this example contain XML attributes, so don’t be con-
fused by the dn = cn=Janet Smith, dc=xyz, dc=com attribute—it does not
mean dn is a directory entry attribute in LDAP.

10.1.4 PerlSAX’s built-in error checking

As we mentioned previously, one of the benefits of using XML is the ability to avoid
writing code to detect potential errors in the input file. For example, let’s change the
following line in janet.xml:
DSML PARSING WITH SAX 189

</dsml:directory-entries>

Delete the y in directory, changing the line to the following, and rerun the Simple-
Handler.pl program:

</dsml:director-entries>

The parser should output an error message looking similar to this:

mismatched tag at line 11, column 3, byte 424 at
 .../XML/Parser.pm line 168

PerlSAX and the Expat parser on which it is built do not support document checking
based on document type definitions (DTDs). So, if you also misspell the starting tag for
the dsml:directory-entries element as follows, the parser will not complain:

<dsml:director-entries>
....some entries....
</dsml:director-entries>

Parsers available in other languages, such as IBM’s XML4J parser for Java, will detect
this error if they’re told to check against the DSML definition. Without this function-
ality, you must do your own checking.

10.2 PARSING DSML INTO A PERL OBJECT

Although the SimpleHandler class is useful to understand how PerlSAX handlers
work, the ability to print the elements in an XML file does not help you in your quest
to do something useful with DSML. Let’s leverage both Net::LDAP and PerlSAX to
create a handler that will read a DSML file containing entries, making those entries
available as Net::LDAP Entry objects that can be updated in the directory. The
functionality you will use from Net::LDAP was explored in chapter 6. Listing 10.3
presents the entire handler; the following sections explain the code.

use strict;

package DSMLHandler;
$VERSION = "1.00";

my @entries = ();
my $current_entry;
my @where = ();
my $cur_attr;

my $DSML_DSML = 0;
my $DSML_DIRECTORY_ENTRIES = 1;
my $DSML_ENTRY = 2;
my $DSML_OBJECTCLASS = 3;
my $DSML_OC_VALUE = 4;
my $DSML_ATTR = 5;

Listing 10.3 DSMLHandler.pm
190 CHAPTER 10 DSML: GETTING UNDER THE HOOD

my $DSML_VALUE = 6;

sub new {
 my ($type) = @_;
 return bless {}, $type;
}

sub start_element {
 my ($self, $element) = @_;

 my %attr_hash = %{$element->{Attributes}};
 my $cur_tag = $where[$#where];

 $_ = $element->{Name};
 if (/dsml:entry/ && $cur_tag == $DSML_DIRECTORY_ENTRIES) {
 $current_entry = new Net::LDAP::Entry();
 # We can use the DN XML attribute to set the DN for this entry.
 $current_entry->dn($attr_hash{"dn"});
 push(@where,$DSML_ENTRY);
 } elsif (/dsml:oc-value/ && $cur_tag == $DSML_OBJECTCLASS) {
 push(@where,$DSML_OC_VALUE);
 } elsif (/dsml:objectclass/ && $cur_tag == $DSML_ENTRY) {
 push(@where,$DSML_OBJECTCLASS);
 } elsif (/dsml:attr/ && $cur_tag == $DSML_ENTRY) {
 # Here we set the current attribute for later use
 push(@where,$DSML_ATTR);
 $cur_attr = $attr_hash{"name"};
 } elsif (/dsml:value/ && $cur_tag == $DSML_ATTR) {
 push(@where,$DSML_VALUE);
 } elsif (/dsml:dsml/) {
 push(@where,$DSML_DSML);
 } elsif (/dsml:directory-entries/ && $cur_tag == $DSML_DSML) {
 push(@where,$DSML_DIRECTORY_ENTRIES);
 }
}

sub end_element {
 my ($self, $element) = @_;
 if ($element->{Name} =~ /^dsml/) {
 if ($element->{Name} =~ /dsml:entry/) {
 push(@entries,$current_entry);
 }
 pop(@where);
 }
}

sub characters {
 my ($self, $characters) = @_;

 my $cur_tag = $where[$#where];

 if ($cur_tag == $DSML_OC_VALUE) {
 $current_entry->add("objectclass",$characters->{"Data"});
 } elsif ($cur_tag == $DSML_VALUE) {
 $current_entry->add($cur_attr,$characters->{"Data"});
 }
PARSING DSML INTO A PERL OBJECT 191

}

sub get_entries {
 return @entries;
}

1;

10.2.1 Beginnings of a useful DSML parser handler

As usual, you begin your new handler class with the package directive. Call this
class DSMLHandler:

package DSMLHandler;

You need to keep state, because you will potentially be parsing multiple entries and
need to know where you are at all times. The @entries array contains all the entries
you parse out of this file. $current_entry holds the current entry, if there is one.
You use the @where array as a stack containing the elements above you in the docu-
ment tree. Finally, you need to track the current attribute when adding new attribute
values; you use the scalar $cur_attr for this purpose:

my @entries = ();
my $current_entry;
my @where = ();
my $cur_attr;

For simplicity, you define constants for each of the major elements you plan to
encounter:

my $DSML_DSML = 0;
my $DSML_DIRECTORY_ENTRIES = 1;
my $DSML_ENTRY = 2;
my $DSML_OBJECTCLASS = 3;
my $DSML_OC_VALUE = 4;
my $DSML_ATTR = 5;
my $DSML_VALUE = 6;

You use the same constructor as in the SimpleHandler class. If you needed to ini-
tialize any variables, you might do so here as well:

sub new {
 my ($type) = @_;
 return bless {}, $type;
}

This code allows you to create new DSMLHandler objects in Perl. The constructor
requires two parameters and returns a new, empty handler. It will be called directly
only by the SAX parser.
192 CHAPTER 10 DSML: GETTING UNDER THE HOOD

10.2.2 Handling elements in the DSML file

The start_element() method looks rather complicated, but is much simpler
than it appears. You begin by putting XML attributes, if any, into the %attr_hash
hash. The current element is then located at the end of your @where array and
placed into $cur_tag:

sub start_element {
 my ($self, $element) = @_;
 my %attr_hash = %{$element->{Attributes}};
 my $cur_tag = $where[$#where];

Next you check to see what the previous element is ($cur_tag) and determine the
name of the current element. If both criteria match, you add the current element to
the @where stack. If there are XML attributes, you handle them appropriately:

 $_ = $element->{Name};
 if (/dsml:entry/ && $cur_tag == $DSML_DIRECTORY_ENTRIES) {
 $current_entry = new Net::LDAP::Entry();
 # We can use the DN XML attribute to set the DN for this entry.
 $current_entry->dn($attr_hash{"dn"});
 push(@where,$DSML_ENTRY);
 } elsif (/dsml:oc-value/ && $cur_tag == $DSML_OBJECTCLASS) {
 push(@where,$DSML_OC_VALUE);
 } elsif (/dsml:objectclass/ && $cur_tag == $DSML_ENTRY) {
 push(@where,$DSML_OBJECTCLASS);
 } elsif (/dsml:attr/ && $cur_tag == $DSML_ENTRY) {
 push(@where,$DSML_ATTR);
 # Here we set the current attribute for later use
 $cur_attr = $attr_hash{"name"};
 } elsif (/dsml:value/ && $cur_tag == $DSML_ATTR) {
 push(@where,$DSML_VALUE);
 } elsif (/dsml:dsml/) {
 push(@where,$DSML_DSML);
 } elsif (/dsml:directory-entries/ && $cur_tag == $DSML_DSML) {
 push(@where,$DSML_DIRECTORY_ENTRIES);
 }
}

While you check tags, you take a shortcut in the end_element() method. Here
you check to see that the name of the ending element begins with dsml. Those ele-
ments that match will cause a value to be removed from the @where stack. If you are
ending an entry, you add the entry to the @entries array:

sub end_element {
 my ($self, $element) = @_;
 if ($element->{Name} =~ /^dsml/) {
 if ($element->{Name} =~ /dsml:entry/) {
PARSING DSML INTO A PERL OBJECT 193

 push(@entries,$current_entry);
 }
 pop(@where);
 }
}

With both the start and end tags handled appropriately, you are almost finished.

10.2.3 Extracting characters between start and end tags

You only care if you receive characters when the current element is either dsml:
oc-value or dsml:value. In both cases, you add a new value to the appropriate
attribute within the current Entry object:

sub characters {
 my ($self, $characters) = @_;

 my $cur_tag = $where[$#where];

 if ($cur_tag == $DSML_OC_VALUE) {
 $current_entry->add("objectclass",$characters->{"Data"});
 } elsif ($cur_tag == $DSML_VALUE) {
 $current_entry->add($cur_attr,$characters->{"Data"});
 }
}

You can complete your class by adding a method that allows people to get the
@entries array after parsing the DSML file. As usual, you also return 1 at the end
of the package file to indicate that the class has loaded properly:

sub get_entries {
 return @entries;
}

1;

10.2.4 Preparing to use DSMLHandler

You have now created a fully usable SAX handler for converting DSML into
Net::LDAP::Entry objects that can be used directly with the Net::LDAP module.
With the DSMLHandler created, you are about ready to parse your first DSML file
into a useful Perl object. First, you can do a simple test to see if it works properly.
That test involves invoking the parser with your handler, and then cycling through
each of the returned Entry objects, printing each in LDIF format.

10.2.5 Invoking the SAX parser using DSMLHandler

Your next order of business is to create a new script that invokes the parser using your
handler. Listing 10.4 shows such an example.
194 CHAPTER 10 DSML: GETTING UNDER THE HOOD

use XML::Parser::PerlSAX;
use Net::LDAP;
use DSMLHandler;

my $handler = new DSMLHandler;
my $parser = new XML::Parser::PerlSAX(Handler => $handler);

my $xmlfile = $ARGV[0];
$parser->parse(Source => { SystemId => $xmlfile });
my @entries = $handler->get_entries();

my $conn = new Net::LDAP("localhost");
$conn->bind("cn=admin","password");

You begin, as usual, by using the necessary modules. In this example, you include
both the PerlSAX parser and the DSMLHandler class you just created:

use XML::Parser::PerlSAX;
use DSMLHandler;

Next you create a new instance of both your DSMLHandler and the parser. As in the
SimpleHandler, you use the input filename specified as an argument to this pro-
gram and invoke the parser on the referenced file:

my $handler = new DSMLHandler;
my $parser = new XML::Parser::PerlSAX(Handler => $handler);

my $xmlfile = $ARGV[0];
$parser->parse(Source => { SystemId => $xmlfile });

Now that the file has been parsed, you can call the get_entries() method on
your handler to retrieve all the entries parsed from the input file. You then loop
through each of the Entry objects, calling the printLDIF() method on them to
do the dirty work of displaying the entry’s LDIF representation:

my @entries = $handler->get_entries();

foreach my $entry (@entries) {
 $entry->printLDIF();
}

If you run the test program, passing your janet.xml file from chapter 5, you should
see the following results:

dn: cn=Janet Smith,dc=xyz,dc=com
objectclass: top
objectclass: person
cn: Janet Smith
sn: Smith

Listing 10.4 testdsml.pl
PARSING DSML INTO A PERL OBJECT 195

If you were importing entries from DSML, you could modify your test program
slightly. The bold lines in listing 10.5 for testdsml2.pl show how you can use
Net::LDAP to add the entry to the directory.

use XML::Parser::PerlSAX;
use Net::LDAP;
use DSMLHandler;

my $handler = new DSMLHandler;
my $parser = new XML::Parser::PerlSAX(Handler => $handler);

my $xmlfile = $ARGV[0];
$parser->parse(Source => { SystemId => $xmlfile });
my @entries = $handler->get_entries();

my $conn = new Net::LDAP("localhost");

$conn->bind("cn=admin","password");

foreach my $entry (@entries) {

 print "Adding Entry: " . $entry->dn() . "\n";

 $conn->add($entry);

}

Why would you want to add these DSML entries to the directory? After all, they
probably came from a directory, right?

There are many reasons, but one is to share information across organizational
boundaries. This ability is especially useful because of DSML’s ability to handle sche-
mas in addition to entry data, as you learned in chapter 5. Such functionality makes
it possible to safely share a subset of directory information plus metadata that provides
the context necessary to use that information without forcing a direct-connect or
highly invasive synchronization model.

10.3 GENERATING DSML

You can generate DSML two ways. The first is simply to write code that sequentially
generates the appropriate XML tags. The other is to manipulate the DOM tree and
then print the contents of the tree. The DOM tree is the hierarchy of XML attributes
that can be manipulated using the XML DOM APIs.

For most simple scripts, the first approach is the way to go. However, applications
that constantly update a DSML document may be better off using DOM, which allows
the nodes in the XML document to be manipulated more freely.

10.3.1 Writing directory entries

To better understand how a DSML document can be created, let’s walk through the
creation of a DSML document containing an LDAP entry. Listing 10.6 shows the

Listing 10.5 testdsml2.pl
196 CHAPTER 10 DSML: GETTING UNDER THE HOOD

script. You’ll use Net::LDAP to query the directory; the DSML structure will be gener-
ated manually using print statements.

use Net::LDAP;
use Net::LDAP::Entry;

$conn = new Net::LDAP("localhost");

$mesg = $conn->search(base=>"dc=xyz,dc=com",scope=>"sub",
 filter=>"(sn=Smith)");

print "<dsml:dsml xmlns:dsml=\"http://www.dsml.org/DSML\">\n";
print " <dsml:dsml-entries>\n";

for ($i = 0; $i = $mesg->count; $i++) {
 $entry = $mesg->entry($i);

 print " <dsml:entry dn=\"" . $entry->dn() . "\">\n";
 print " <dsml:objectclass>\n";

 foreach $oclass ($entry->get_value("objectclass")) {
 print " <dsml:oc-value>" . $oclass .
 "</dsml:oc-value>\n";
 }
 print " </dsml:objectclass>\n";

 foreach $attr ($entry->attributes) {
 if ($attr !~ /objectclass/i) {
 print " <dsml:attr name=\"" . $attr . "\">\n";
 @vals = $entry->get_value($attr);
 foreach $val (@vals) {
 print " <dsml:value>" . $val .
 "</dsml:value>\n";
 }
 print " </dsml:attr>\n";
 }
 }
 print " </dsml:entry>\n";
}

print " </dsml:directory-entries>\n";
print "</dsml:dsml>\n";

As expected, the following search returns any entry with the last name Smith within the
dc=xyz,dc=com subtree. The first returned entry is placed in the $entry variable:

$conn = new Net::LDAP("localhost");

$mesg = $conn->search(base=>"dc=xyz,dc=com",scope=>"sub",
 filter=>"(sn=Smith)");

Listing 10.6 entryToDSML.pl
GENERATING DSML 197

The line that follows is needed at the beginning of the DSML file to indicate which
type of XML document you are producing. It also provides a URL pointing to where
the document’s definition can be found:

print "<dsml:dsml xmlns:dsml=\"http://www.dsml.org/DSML\">\n";

Because you are creating LDAP entries, not schemas, you need to indicate the start of
your entries with the dsml:dsml-entries tag. You can then begin cycling
through each of the returned entries:

print " <dsml:dsml-entries>\n";

for ($i = 0; $i = $mesg->count; $i++) {
 $entry = $mesg->entry($i);

The entry’s distinguished name is published as part of the dsml:entry element.
This indicates the start of a DSML entry:

 print " <dsml:entry dn=\"" . $entry->dn() . "\">\n";

In DSML, the values of the objectclass attribute are separated from the others.
These values are instead wrapped within dsml:oc-value tags within the
dsml:objectclass section of the entry:

 print " <dsml:objectclass>\n";

 foreach $oclass ($entry->get_value("objectclass")) {
 print " <dsml:oc-value>" . $oclass .
 "</dsml:oc-value>\n";
 }
 print " </dsml:objectclass>\n";

Each LDAP attribute type, with the exception of the objectclass attribute, needs
to be printed within a dsml:attr element. In the second line that follows, you
ensure that you print only attributes other than the entry’s objectclass:

 foreach $attr ($entry->attributes) {
 if ($attr !~ /objectclass/i) {
 print " <dsml:attr name=\"" . $attr . "\">\n";
 @vals = $entry->get_value($attr);

The attribute values are wrapped within individual dsml:value tags. DSML, like
LDAP, allows for multiple values for each attribute:

 foreach $val (@vals) {
 print " <dsml:value>" . $val .
 "</dsml:value>\n";
 }
 print " </dsml:attr>\n";
 }
 }
198 CHAPTER 10 DSML: GETTING UNDER THE HOOD

At the end of each entry, you need to end the dsml:entry element:

 print " </dsml:entry>\n";
}

When you are finished processing all entries, you print the end tags to note the end of
both the list of entries and the DSML file:

print " </dsml:directory-entries>\n";

print "</dsml:dsml>\n";

When run, the script in listing 10.6 prints out any number of entries returned from
the LDAP server as a set of DSML-formatted entries in a single DSML document.

10.3.2 Converting RFC-style LDAP schemas

to DSML LDAP schemas

In the previous example, you included only entry information in your DSML output.
This is fine, as long as the recipient of the DSML document knows the schema you
are using. In fact, even without knowing the LDAP schema you are using, the recipi-
ent could make some use of the DSML document, such as translating it for printout
in a more human-readable format.

However, if you want to include the schema, you have work to do. The schema is
commonly defined in standards using a fairly compressed format described in
RFC 2252.

Here is an example of what the person object class looks like in this format:

(2.5.6.6 NAME 'person' SUP top STRUCTURAL MUST (sn $ cn)
 MAY (userPassword $ telephoneNumber $ seeAlso
 $ description))

This code contains all the information related to the object class described in
chapter 2, including OID, class name, superior class, type of class, and required and
allowed attributes.

A similar format is defined for LDAP attribute types. The following is an example
of what the telephoneNumber attribute looks like in this format:

(2.5.4.20 NAME 'telephoneNumber' EQUALITY telephoneNumberMatch
 SUBSTR telephoneNumberSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50{32})

DSML, as you’ve seen, uses a different format for representing both of these schema
elements. Therefore, if you want to include schema information in your DSML docu-
ments, you need to convert from these RFC-style definitions to DSML style.

10.3.3 Conversion example for object classes

Because you will sometimes need to take an RFC 2252–style object class and write it
out as DSML, the example in listing 10.7 does exactly that. You will expect input as
formatted in the object class schema definition style shown in the previous section.
GENERATING DSML 199

print "<dsml:dsml xmlns:dsml=\"http://www.dsml.org/DSML\">\n";
print " <dsml:directory-schema>\n";

open(AFILE,$ARGV[0]);

while ($def = <AFILE>)
{
 chop $def;

 $def =~ /([\d\.]+)\s+NAME\s+'([\w\d;-]+)'/;
 $oid = $1;
 $name = $2;
 $sup = "";
 if ($def =~ /SUP ([\w]+)/)
 {
 $sup = $1;
 }

 if ($def =~ /MUST [\(']+([$ \w]+)[\)']+/ ||
 $def =~ /MUST (\w+)/)
 {
 $must = $1;
 $must =~ s/ //g;
 @must = split(/\$/,$must);
 }

 if ($def =~ /MAY [\(']+([$ \w]+)[\)']+/ ||
 $def =~ /MAY (\w+)/)
 {
 $may = $1;
 $may =~ s/ //g;
 @may = split(/\$/,$may);
 }

 $type = "";

 if ($def =~ /ABSTRACT/) {
 $type = "abstract";
 }

 if ($def =~ /AUXILIARY/) {
 $type = "auxiliary";
 }

 if ($type eq "")
 {
 $type = "structural";
 }

 print " <dsml:class\n";
 print " id=\"" . $name . "\"\n";
 print " type=\"" . $type . "\"";

 if ($sup ne "") {

Listing 10.7 rfcToDSMLObjectClass.pl
200 CHAPTER 10 DSML: GETTING UNDER THE HOOD

 print "\n superior=\"#" . $sup . "\"";
 }
 print ">\n";
 print " <dsml:name>" . $name . "</dsml:name>\n";
 print " <dsml:object-identifier>" . $oid .
 "</dsml:object-identifier>\n";

 foreach $must (@must) {
 print " <dsml:attribute ref=\"#" . $must .

 "\" required=\"true\"/>\n";
 }

 foreach $may (@may) {
 print " <dsml:attribute ref=\"#" . $may .
 "\" required=\"false\"/>\n";
 }

 print " </dsml:class>\n";
}
print " </dsml:dsml-schema>\n";
print "</dsml:dsml>\n";

As in the earlier DSML files, you print a line indicated the start of the DSML docu-
ment and the URL for the XML document type. However, in this document you are
producing a schema; you indicate that fact with the opening dsml:directory-
schema element:

print "<dsml:dsml xmlns:dsml=\"http://www.dsml.org/DSML\">\n";
print " <dsml:directory-schema>\n";

Note that it is possible, and likely, that you will include both a schema and entries in
the same file. To do so, you simply ensure that you have only a single dsml:dsml
tag, with both a dsml:directory-schema tag and a dsml:dsml-entries
tag below it.

In some of the previous examples, you read from standard input. In this example
you take the first argument passed from the command line as the name of the file con-
taining RFC-style definitions. Once open, you read each line as an individual RFC-
style definition:

open(AFILE,$ARGV[0]);

while ($def = <AFILE>)
{

You next remove the trailing linefeeds and use regular expressions to parse the OID and
name of the attribute. The following regular expression looks for a dot-separated num-
ber, followed by one or more spaces, the word NAME, another space, and then a com-
bination of letters, numbers, semicolons, and dashes—the characters that can make up
an object class name. In the next two lines, $1 matches the first set of parentheses, and
GENERATING DSML 201

$2 matches the second set. Because these two sets are around the OID and name of the
object class, respectively, you assign them to appropriate variables:

 chop $def;

 $def =~ /([\d\.]+)\s+NAME\s+'([\w\d;-]+)'/;
 $oid = $1;
 $name = $2;

It is possible, but not required, for an object class to have a superior class. Here you
see if the SUP keyword exists; if so, you assign its value to the $sup variable:

 $sup = "";
 if ($def =~ /SUP ([\w]+)/)
 {
 $sup = $1;
 }

Writing required and allowed attributes

MUST definitions are a little more complex, because the format of the definition
changes depending on whether a single attribute type or multiple types are required.
The following regular expressions will parse either style and then place the entire list of
required attributes into the $must variable. You next remove any spaces that may
occur in the definition. If multiple attributes exist, they are separated by the dollar sign
($), which you use in the final line to split the $must variable into the @must array:

 if ($def =~ /MUST [\(']+([$ \w]+)[\)']+/ ||
 $def =~ /MUST (\w+)/)
 {
 $must = $1;
 $must =~ s/ //g;
 @must = split(/\$/,$must);
 }

The MAY keyword is parsed identically to the MUST keyword, except that you put the
list into the @may array:

 if ($def =~ /MAY [\(']+([$ \w]+)[\)']+/ ||
 $def =~ /MAY (\w+)/)
 {
 $may = $1;
 $may =~ s/ //g;
 @may = split(/\$/,$may);
 }

Handling the object class’s type

If the object class type is undefined, it is structural by default. Here you check to see
if the type is either abstract or auxiliary:

 $type = "";

 if ($def =~ /ABSTRACT/) {
202 CHAPTER 10 DSML: GETTING UNDER THE HOOD

 $type = "abstract";
 }

 if ($def =~ /AUXILIARY/) {
 $type = "auxiliary";
 }

 if ($type eq "")
 {
 $type = "structural";
 }

Printing the parsed information as DSML

Having parsed the entire definition, you are now ready to print the definition as
DSML. You begin with the dsml:class tag, which initiates each new class, specify-
ing the class’s id, type, and optional superior class as XML attributes. It is common to
use the class name as its DSML id:

 print " <dsml:class\n";
 print " id=\"" . $name . "\"\n";
 print " type=\"" . $type . "\"";

 if ($sup ne "") {
 print "\n superior=\"#" . $sup . "\"";
 }

 print ">\n";

Next you need to print out the class name and object identifier using the
dsml:name and dsml:object-identifier, respectively. You could also print
a dsml:description here if you had one available:

 print " <dsml:name>" . $name . "</dsml:name>\n";
 print " <dsml:object-identifier>" . $oid .
 "</dsml:object-identifier>\n";

You now cycle through each of the required attributes in the @must array, printing
each one as a reference to its attribute type definition. In this example, you assume
that the attribute type definitions follow later in the file:

 foreach $must (@must) {
 print " <dsml:attribute ref=\"#" . $must .
 "\" required=\"true\"/>\n";
 }

You use the same logic for the @may array that lists optional attribute types, but for
these you set the required XML attribute to false:

 foreach $may (@may) {
 print " <dsml:attribute ref=\"#" . $may .
 "\" required=\"false\"/>\n";
 }
GENERATING DSML 203

Finally, you end each class by issuing the closing tag for the dsml:class element
and continue on to the next object class:

 print " </dsml:class>\n";
}

When run, this example gives output that looks something like the following partial
output for the top object class:

<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">
 <dsml:directory-schema>
 <dsml:class id="top" type="abstract">
 <dsml:name>top</dsml:name>
 <dsml:object-identifier>2.5.6.0</dsml:object-identifier>
 <dsml:attribute ref="#objectClass" required="true" />
 </dsml:class>
...

This output conforms to the DSML standard for schema representation; the segment
here shows the definition of the standard top object class.

10.3.4 Converting attribute types

The conversion of attribute types is similar in some ways to the conversion of object
classes shown in the previous section. Listing 10.8 shows a full program that takes a
file with RFC 2252–formatted attributes as input and generates compliant DSML.

print "<dsml:dsml xmlns:dsml=\"http://www.dsml.org/DSML\">\n";
print " <dsml:directory-schema>\n";

open(AFILE,$ARGV[0]);

while ($def = <AFILE>)
{
 chop $def;

 $def =~ /([\d\.]+)\s+NAME\s+'([\w\d;-]+)'/;
 $oid = $1;
 $name = $2;
 $sup = "";
 $syntax = "";
 $equality = "";
 $substr = "";

 if ($def =~ /SYNTAX ([\w\d\.\{\}]+)/) {
 $syntax = $1;
 }

 if ($def =~ /EQUALITY (\w+)/) {
 $equality = $1;
 }

 if ($def =~ /SUBSTR (\w+)/) {

Listing 10.8 rfcToDSMLAttrTypes.pl
204 CHAPTER 10 DSML: GETTING UNDER THE HOOD

 $substr = $1;
 }

 if ($def =~ /SUP ([\w\d;-]+)/) {
 $sup = $1;
 }

 if ($def =~ /SINGLE-VALUE/) {
 $multival = 0;

 } else {
 $multival = 1;
 }

 if ($def =~ /NO-USER-MODIFICATION/) {
 $usermod = 0;
 } else {
 $usermod = 1;
 }

 print "<dsml:attribute-type id=\"$name\"";
 if ($sup) {
 print " superior=\"#$sup\"";
 }
 print ">\n";

 print " <dsml:name>$name</dsml:name>\n";
 print " <dsml:object-identifier>$oid" .
 "</dsml:object-identifier>\n";

 if ($syntax ne "") {
 $syntax =~ /([\d\.]+)/;
 $oidsyntax = $syntax{$1};
 print " <dsml:syntax>$oidsyntax</dsml:syntax>\n";
 }

 if ($equality ne "") {
 print " <dsml:equality>" . $equality .
 "</dsml:equality>\n";
 }

 if ($substr ne "") {
 print " <dsml:substring>" . $substr .
 "</dsml:substring>\n";
 }

 if ($multival == 0 {
 print " <dsml:single-value>true</dsml:single-value>\n";
 }

 if ($usermod == 0) {
 print " <dsml:user-modification>false" .
 "</dsml:user-modification>";
 }
}

GENERATING DSML 205

Understanding the code

As in the previous example, you print the DSML header and DSML schema tag. You
also open the input file specified by the first command-line argument to the script
and cycle through each of the attribute types listed in this file:

print "<dsml:dsml xmlns:dsml=\"http://www.dsml.org/DSML\">\n";
print " <dsml:directory-schema>\n";

open(AFILE,$ARGV[0]);

while ($def = <AFILE>)
{
 chop $def;

In the RFC format, the name and OID of an attribute type are formatted the same way
as in an object class. You can use the same regular expression to perform this match:

 $def =~ /([\d\.]+)\s+NAME\s+'([\w\d;-]+)'/;
 $oid = $1;
 $name = $2;

Next, you need to ensure that you do not carry over any of the values parsed from
the previous attribute type. To do so, you empty these variables before you con-
tinue parsing:

 $sup = "";
 $syntax = "";
 $equality = "";
 $substr = "";

The first part of the definition you parse out is the syntax. It can be either an OID or
a textual syntax definition. It is typically an OID in the standards documents:

 if ($def =~ /SYNTAX ([\w\d\.\{\}]+)/) {
 $syntax = $1;
 }

Similarly, you parse out equality and substring matching rules. Servers use these to
determine how different types of searches should be performed against the attribute:

 if ($def =~ /EQUALITY (\w+)/) {
 $equality = $1;
 }

 if ($def =~ /SUBSTR (\w+)/) {
 $substr = $1;
 }

Like object classes, attribute types may have superiors from which they inherit. This
inheritance may include matching rules, as well as other information, including syn-
tax. Here you simply need to find the name of the superior type, if it exists:

 if ($def =~ /SUP ([\w\d;-]+)/) {
 $sup = $1;
 }
206 CHAPTER 10 DSML: GETTING UNDER THE HOOD

Not all attributes are multivalued. RFC-style attribute definitions with the SINGLE-
VALUE flag allow only a single value. By default, a type allows multiple values:

 if ($def =~ /SINGLE-VALUE/) {
 $multival = 0;
 } else {
 $multival = 1;
 }

Some attribute types are operational in nature, meaning that they are reserved for
modification by the directory server process itself, rather than by users connected via
the LDAP protocol. These types are designated in the RFCs by the NO-USER-MODI-
FICATION flag:

 if ($def =~ /NO-USER-MODIFICATION/) {
 $usermod = 0;
 } else {
 $usermod = 1;
 }

Having parsed all the important information from the RFC-style attribute type, you
can now print it in DSML. You begin by printing the dsml:attribute-type ele-
ment, which includes the id of the type, as well as superior (if it exists):

 print " <dsml:attribute-type id=\"$name\"";
 if ($sup) {
 print " superior=\"#$sup\"";
 }
 print ">\n";

Next you must print both the name and OID of the type using the dsml:name and
dsml:object-identifier elements:

 print " <dsml:name>$name</dsml:name>\n";
 print " <dsml:object-identifier>$oid" .
 "</dsml:object-identifier>\n";

The dsml:syntax tag is used to detail the syntax of the type. Here you filter out
anything other than the syntax’s OID. You could later extend this code to check for
any bounds information, which is sometimes specified:

 if ($syntax ne "") {
 $syntax =~ /([\d\.]+)/;
 $oidsyntax = $syntax{$1};
 print " <dsml:syntax>$oidsyntax</dsml:syntax>\n";
 }

Equality and substring matching rules are printed as they are found within the appro-
priate tags:

 if ($equality ne "") {
 print " <dsml:equality>" . $equality .
 "</dsml:equality>\n";
GENERATING DSML 207

 }

 if ($substr ne "") {
 print " <dsml:substring>" . $substr .
 "</dsml:substring>\n";
 }

If the attribute is single-valued, you need to note it using the dsml:single-
value element. You could optionally set this tag to false, but because that is the
default value, it does not need to be set explicitly:

 if ($multival == 0) {
 print " <dsml:single-value>true</dsml:single-value>\n";
 }

The same goes for the dsml:user-modification element. By default, this value
is set to true. If it is not to be modified by end users, you need to change the value
within this tag to false:

 if ($usermod == 0) {
 print " <dsml:user-modification>false" .
 "</dsml:user-modification>";
 }
}

When you run this program with sample input from one of the RFCs, you will see
output something like the following lines:

...
 <dsml:attribute-type id="createTimestamp">
 <dsml:name>createTimestamp</dsml:name>
 <dsml:object-identifier>2.5.18.1</dsml:object-identifier>
 <dsml:syntax>1.3.6.1.4.1.1466.115.121.1.24</dsml:syntax>
 <dsml:single-value>true</dsml:single-value>

 <dsml:user-modification>false</dsml:user-modification>
 <dsml:equality>generalizedTimeMatch</dsml:equality>
 </dsml:attribute-type>
...

This output shows the createTimestamp attribute type, which is explicitly
defined in RFC 2252. You see that it allows only a single value and does not allow
user modification; the output also provides other information that directly matches
the type’s standard definition.

10.4 USING PERL TO CONVERT DSML WITH XSLT

As discussed in chapter 5, XSLT is a very popular, standard way of transforming an
XML document into other forms. It allows you to do things like convert DSML into
HTML or even non-XML–style documents based on a set of rules.
208 CHAPTER 10 DSML: GETTING UNDER THE HOOD

In chapter 5, we gave an example of a stylesheet and showed how the output of a
DSML file looks after being run through the stylesheet. In this section, you’ll generate
the Perl code necessary to perform this conversion.

10.4.1 Converting DSML to HTML

Because HTML is a commonly used general encoding format for documents, this
example uses Perl and XSLT to convert DSML into HTML. A stylesheet for doing
this conversion is shown in listing 10.9. Even if you aren’t familiar with XSLT, you
can read through the stylesheet and see that it basically lists HTML tags around
DSML elements.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <head>
 <title>Results</title>
 </head>
 <body>
 <h1>Results</h1>
 <xsl:for-each select=
 "dsml:dsml/dsml:directory-entries/dsml:entry">
 <h4>
 <xsl:value-of select="@dn"/>
 </h4>
 <table border="1">
 <xsl:for-each select="dsml:attr">
 <tr>
 <th>

 <xsl:value-of select="@name"/>
 </th>
 <xsl:for-each select="dsml:value">
 <td>
 <xsl:value-of select="."/>
 </td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Listing 10.9 simple.xsl
USING PERL TO CONVERT DSML WITH XSLT 209

This stylesheet can be invoked in Perl by the XML::XSLT module. The code to do this
is in the short code segment dsmlxslt.pl (listing 10.10).

use XML::XSLT;

$xslfile = $ARGV[0];

$xmlfile = $ARGV[1];

my $parser = new XML::XSLT($xslfile);
$parser->transform_document($xmlfile);
$parser->print_result;
$parser->dispose();

Executing the dsmlxslt.pl script transforms the janet.xml DSML file from chapter 5
into the HTML shown in listing 10.11.

<html>
 <head>
 <title>Results</title>
 </head>
 <body>
 <h1>Results</h1>
 <h4>cn=Janet Smith,dc=xyz,dc=com</h4>
 <table border="1">
 <tr>
 <th>cn</th>
 <td>Janet Smith</td>
 </tr>
 <tr>
 <th>sn</th>
 <td>Smith</td>
 </tr>
 </table>
 </body>
</html>

Converting to a format other than HTML only requires a different stylesheet. Thus
you can change the document’s presentation without changing the contents of the
original data found in the janet.xml file.

Listing 10.10 dsmlxslt.pl

Listing 10.11 janet.html
210 CHAPTER 10 DSML: GETTING UNDER THE HOOD

10.5 SUMMARY

This chapter expanded on the basic understanding of DSML provided in chapter 5 by
showing real examples for generating and parsing DSML documents. We covered both
entry and schema information. We also discussed XML transformations with XSLT
using Perl examples that automatically convert documents from DSML into HTML.

The next part of the book moves from covering data integration and server man-
agement to using LDAP from applications. In making this transition, the examples will
shift from Perl to Java.
SUMMARY 211

3
P A R T
Application integration
It is possible to deploy a directory without considering the applications that will need
to directly interface with it. However, keeping an eye on specific applications needed
in your environment that will impact directories will ensure that both directory and
application deployments go more smoothly.

The examples in this part of the book use Java. In chapter 11, we walk through the
use of the JNDI to access and manipulate information in an LDAP directory.

Chapter 12 tackles using DSML, the XML standard for directory services. Because
this standard can be used with web-based, component-based, and even directory syn-
chronization applications, it is an important one to understand. Our examples
include both parsing and creation of DSML documents as well as the creation of
DSMLv2 operations.

Chapter 13 moves to one of the most important uses of directories: security.
Security is critical for applications, and directories are becoming the point of stor-
age for credentials and policies. In this chapter, we discuss how you can use directo-
ries to provide these services, and we look at directory dependencies from PKI and
other technologies.

C H A P T E R 1 1

Accessing LDAP
directories with JNDI

11.1 Introduction to JNDI 216
11.2 JNDI architecture 216
11.3 JNDI operations: the

DirContext class 217

11.4 Searching with JNDI 220
11.5 Adding entries 226
11.6 Manipulating entries 229
11.7 Summary 232
Integrating support for directory services based on the standards described in this
book requires an understanding of both what needs to be done as well as the actual
interfaces for doing it. Multiple interfaces are available for accessing LDAP-enabled
directories in Java. One interface was originally designed and developed by Netscape;
the other, JNDI, was developed by Sun as part of the core Java environment. This
chapter introduces the basics of using JNDI to access LDAP-enabled directories and
provides several JNDI-based examples.

In this chapter we will answer the following questions:

• What is JNDI? What alternatives are there, and why was JNDI selected for this
book versus those alternatives?

• How can JNDI be used to open and close connections to directories? What is
the DirContext object?

• How can DirContext be used to search the directory? How can the results be
abstracted for easier access?

• What is the best way to add entries to the directory with JNDI? What about
other types of changes to the directory?
215

11.1 INTRODUCTION TO JNDI

JNDI began its life a few years ago as an optional Java package, but it is now part of
the core Java 2 Platform Standard Edition (J2SE) and Java 2 Platform Enterprise
Edition (J2EE) distributions. Although you will be using it to access LDAP-enabled
directories, JNDI is also quite capable of accessing naming services such as DNS as
well as non-LDAP directory services.

11.1.1 JNDI versus the LDAP Java SDK

Other LDAP software development kits (SDKs) exist from Sun and Novell, but with
new standards like DSML emerging, JNDI offers a better level of abstraction that
ensures your applications can fit into a broader array of directory environments.
Additionally, JNDI is a core part of the J2SE and J2EE standards.

This is not to say that the LDAP-specific APIs do not offer any benefits. Many ben-
efits exist, with most relating to their close mapping to LDAP operations. However,
this close mapping can mean that applications written using these LDAP-specific APIs
will not map well to web services or other non-LDAP directory access mechanisms as
they surface. As we’ll show in chapter 13 with DSML, JNDI faces no such limitations.

11.2 JNDI ARCHITECTURE

JNDI’s architecture assures its long-term extensibility as new directory standards
emerge and gain acceptance. The architecture consists of two layers. The bottom layer
contains service provider interfaces (SPIs) that know how to talk directly to a specific
kind of directory. Those providers plug directly into a more abstract layer, which con-
sists of the user-accessible JNDI classes that reside in the javax.naming hierarchy.

User code talks directly to the exposed JNDI classes to access and manipulate direc-
tories and name services. As shown in figure 11.1, existing lower-level providers
include NIS and DSML in addition to LDAP. Several other providers are available from
Sun and third parties.

This architecture allows relatively seamless movement from one type of connected
directory to another without substantial changes to code.

User Code

Java Naming and Directory Interface (JNDI)

LDAP Provider DSML Provider NIS Provider

Figure 11.1

JNDI provides a standard interface to vari-

ous directory and name services through

its extensible provider architecture.
216 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

11.2.1 JNDI providers

Like JDBC and other Java APIs, JNDI has an architecture that provides for a high-
level API implemented by any number of low-level drivers. In JNDI’s case, these driv-
ers can connect to everything from LDAP servers to NIS servers.

Two JNDI drivers are commonly available for LDAP:

• Sun LDAP provider for JNDI—com.sun.jndi.ldap.LdapCtxFactory

• IBM LDAP provider for JNDI—com.ibm.jndi.LDAPCtxFactory

The Sun provider is included as part of the main J2SE distribution. The other is avail-
able from IBM as part of its directory server client development kit. Both of these
drivers provide the same basic functionality and work with nearly every LDAP-
enabled directory server on the market.

In the examples in this chapter you will use Sun’s driver, because it tends to be used
more frequently. However, as you will see, changing drivers is not difficult.

11.2.2 The JNDI package

JNDI functionality is part of the javax.naming hierarchy. The classes in
javax.naming are most useful when handling simple name services, whereas the
classes in javax.naming.directory extend the base naming classes to handle
complex directory services, such as LDAP. You will frequently need to import the
classes from these packages in the examples.

11.3 JNDI OPERATIONS: THE DIRCONTEXT CLASS

All operations in JNDI are performed by creating an object called a DirContext.
You can create these objects by specifying a set of properties that define the way the
application should communicate with the server.

The following example creates a DirContext object that is connected to the
LDAP server and can be used for subsequent operations:

Properties env = new Properties();
env.put(DirContext.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
env.put(DirContext.PROVIDER_URL,"ldap://localhost:389");
DirContext dirContext = new InitialDirContext(env);

The class specified by INITIAL_CONTEXT_FACTORY is the factory within the low-
level driver that creates new DirContext objects appropriate for handling the
desired type of directory. In this case you are using the Sun LDAP provider for JNDI,
so you specify "com.sun.jndi.ldap.LdapCtxFactory". You could use the
IBM provider without altering more than a single line of code by simply changing
that factory name.
JNDI OPERATIONS: THE DIRCONTEXT CLASS 217

11.3.1 Handling basic exceptions

The previous snippet of code will not compile, because creating a new DirContext
object has the potential to throw a Java exception called NamingException. You
can handle it easily using a typical Java try/catch block as shown:

try {
 Properties env = new Properties();

 env.put(DirContext.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put(DirContext.PROVIDER_URL,"ldap://localhost:389");
 DirContext dirContext = new InitialDirContext(env);
} catch (NamingException ne) {
 System.err.println("Exception when connecting, " +
 "printing stack trace.");
 ne.printStackTrace();
}

All exceptions in JNDI are derived from NamingException. As we move
through the various examples, we will cover some of the more important specializa-
tions of NamingException.

11.3.2 Closing the connection

Once you have completed all desired operations with the DirContext object, you
should close it to disconnect from the server and free up any associated resources. In
JNDI, you can do so easily by calling the close() method on the open DirCon-
text object.

Like most other operations in JNDI, closing a connection has the ability to throw
a NamingException, which you catch:

try {
 dirContext.close();

} catch (NamingException ne) {
 System.err.println("Exception disconnecting, " +
 "printing stack trace.");
 ne.printStackTrace();
}

In real-world code, you would obviously put in whatever code was necessary to handle
these exceptions rather than simply dump stack traces. However, this code does give
you everything you need to open and close connections to the LDAP server at will.

11.3.3 Binding to the directory

You may not have noticed it in the previous sections, but when you connect to the
directory, you’re actually letting the directory know who you are. You didn’t notice in
the previous examples because you authenticated as the default user—anonymous.

Unlike other LDAP APIs that have separate methods or functions for explicitly
binding to the directory as specific users, JNDI does not separate the creation of the
DirContext object from authentication. Thus if you want to authenticate as a par-
218 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

ticular user, you need to specify that user’s distinguished name and password as part
of the environment passed when creating the initial DirContext.

What follows is an example of the creation of an authenticated DirContext:

Properties env = new Properties();
env.put(DirContext.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
env.put(DirContext.PROVIDER_URL,"ldap://localhost:389");

env.put(DirContext.SECURITY_PRINCIPAL,"cn=Admin");
env.put(DirContext.SECURITY_CREDENTIALS,"manager");
DirContext dirContext = new InitialDirContext(env);

Note that you add two extra properties to the original code for opening the connec-
tion. The first of these lines specifies a SECURITY_PRINCIPAL. This is the distin-
guished name you want to use to identify yourself to the directory.
SECURITY_CREDENTIALS in this instance is a password associated with the
selected identity.

Now, if the distinguished name and password are correct, you will receive an
authenticated DirContext object. Otherwise, creation of the DirContext object
will throw an exception and fail.

11.3.4 A reusable LDAP connection handler

From this point on, every example that connects to an LDAP server will need to cre-
ate and close these DirContext objects. Rather than repeat this code for every
example, you should create a reusable class that does most of the grunt work for you
and allows you to focus on the task at hand.

Listing 11.1 does exactly this. You will use this class in many of the examples
throughout this chapter.

import javax.naming.directory.DirContext;
import javax.naming.directory.InitialDirContext;
import javax.naming.NamingException;
import java.util.Properties;

public class LDAPConnection {

 private String host = "localhost";
 private int port = 389;
 private String dn = null;
 private String password = null;

 public LDAPConnection() {
 }

 public LDAPConnection(String dn, String password) {
 this.dn = dn;
 this.password = password;
 }

Listing 11.1 LDAPConnection.java
JNDI OPERATIONS: THE DIRCONTEXT CLASS 219

 public LDAPConnection(String host, int port,
 String dn, String password) {
 this.host = host;
 this.port = port;
 this.dn = dn;
 this.password = password;
 }

 public DirContext open() throws NamingException {

 Properties env = new Properties();
 env.put(DirContext.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");

 env.put(DirContext.PROVIDER_URL,"ldap://" + host
 + ":" + port);
 if (dn != null) {
 env.put(DirContext.SECURITY_PRINCIPAL,dn);
 env.put(DirContext.SECURITY_CREDENTIALS,password);
 }
 DirContext dirContext = new InitialDirContext(env);
 return dirContext;
 }

 public void close(DirContext dc) {
 try {
 dc.close();
 } catch (NamingException ne) {
 // Ignore exceptions when closing connection...
 }
 }
}

The LDAPConnection class reuses some of the code you developed earlier, but
adds a few constructors that allow you to set some defaults for the connections you
open in the examples. Because in many cases you will open multiple connections,
sometimes with different credentials, these constructors simplify the task of creating
and destroying connections while at the same time allowing you to change your con-
nection information in a central place.

A more sophisticated LDAPConnection class used in a server environment might
be extended to pool anonymous DirContext objects that can be used to do many
common tasks we will discuss. We leave such improvements as an exercise for you,
because there are many good ways to do basic object pooling in Java.

11.4 SEARCHING WITH JNDI

Searching is both the most common and most complex operation that can be per-
formed with LDAP. However, most of the complexity is related to the search criteria,
which chapter 4 describes in great detail.

Set
provider

Optionally
set DN and
password
for bind

Create
DirContext
220 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

Once you understand search criteria, the actual coding is quite simple. The fol-
lowing code segment shows how you can search the directory using a connection
opened with the LDAPConnection class created in the previous section:

try {
 LDAPConnection lc = new LDAPConnection();
 DirContext dc = lc.open();

 SearchControls sc = new SearchControls();
 sc.setSearchScope(SearchControls.SUBTREE_SCOPE);

 NamingEnumeration ne = dc.search("dc=manning,dc=com",sc,
 "(objectclass=*)");
 while (ne.hasMore()) {
 SearchResult sr = ne.next();
 System.out.println(sr.toString());
 }
} catch (NamingException ne) {
 System.err.println("Error Searching: " + ne.getMessage());
}

In this code snippet, you use a few new classes, including SearchControls and
NamingEnumeration. The setSearchScope() method on the SearchCon-
trols class sets the search scope, which is part of the search criteria. In this example
you indicate that you will be searching the entire subtree.

You call the search() method on the open DirContext, which returns a
NamingEnumeration. JNDI makes extensive use of NamingEnumeration
objects, which behave similarly to a standard Java Enumeration object. You can test
whether the NamingEnumeration has more results by using the hasMore()
method and retrieve the next result with the next() method.

The printed output of this example is anything but pretty. The next section walks
through how you can extract information from the search results and make those
results more useful.

11.4.1 Abstracting the entry

Before you create a generalized class for simplifying the activity of searching an
LDAP-enabled directory from JNDI, let’s look at the way you might want to work
with LDAP-sourced information in Java. Most applications will not be solely focused
on directory activity, and passing a directory-centric object like NamingEnumera-
tion to other parts of the application may not make much sense. Abstracting the
returned entry into something that can be easily manipulated and accessed makes it
easier to handle the directory information in the parts of the code that do not depend
heavily on directories.

As we discussed in chapter 2, LDAP information is stored in entries, and each entry
has a name, class, and associated attributes. Let’s create a simple class (listing 11.2) that
is easy to manipulate and gives you instant access to a particular piece of information
retrieved from an LDAP server.
SEARCHING WITH JNDI 221

import java.util.Hashtable;

public class Entry extends Hashtable {

 // Keys and Values will be in the hashtable, but
 // we will store the DN separately.
 private String dn = null;

 public Entry() {
 super();
 }

 public Entry(Entry entry) {
 super((Hashtable)entry);
 setDN(entry.getDN());
 }

 public void setDN(String dn) {
 this.dn = dn;
 }

 public String getDN() {
 return dn;
 }
}

Because an LDAP entry in its most basic form contains a list of keys and values,
you can make manipulation simpler by using a Hashtable. It gives you random
access into a particular key or value without having to make the Entry class terri-
bly complicated:

public class Entry extends Hashtable {

The only information you store outside the key/value pairs associated with attribute
types and values will be the distinguished name.

Although you include a basic constructor that simply initializes the object, another
useful method is to make a copy of an existing Entry object. As you see here, the con-
structor is quite simple because you let the Hashtable handle the grunt work:

 public Entry(Entry entry) {
 super((Hashtable)entry);
 setDN(entry.getDN());

Finally you add a getter and setter to simplify setting and getting the name of the entry:

 public void setDN(String dn) {
 this.dn = dn;
 }

 public String getDN() {
 return dn;
 }

Listing 11.2 Entry.java
222 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

11.4.2 A search class

You use searches throughout this book. In some cases it is important to remind your-
self of the semantics of communicating using JNDI. In others, the process is more
important than the semantics. In these latter cases, it makes sense to have a class that
can do a search and return the results as something easily reusable, such as the Entry
class described in the previous section. Listing 11.3 provides this functionality.

import javax.naming.directory.*;
import javax.naming.*;
import java.util.Vector;
import java.util.Enumeration;

public class LDAPSearch {

 public static Vector search(String base, String scope,
 String filter,
 String[] attributes) {

 Vector results = new Vector();

 LDAPConnection lc = new LDAPConnection();

 DirContext dc = null;
 try {
 dc = lc.open();
 } catch (NamingException ne) {
 System.err.println("Error Opening Connection: " +
 ne.getMessage());
 return results;
 }

 SearchControls sc = new SearchControls();

 if (scope.equals("base")) {
 sc.setSearchScope(SearchControls.OBJECT_SCOPE);
 } else if (scope.equals("one")) {
 sc.setSearchScope(SearchControls.ONELEVEL_SCOPE);
 } else {
 sc.setSearchScope(SearchControls.SUBTREE_SCOPE);
 }

 // Reduce data provided by the LDAP server by listing
 // only those attributes we want to return.

 if (attributes.length > 0) {
 sc.setReturningAttributes(attributes);
 }

 NamingEnumeration ne = null;
 try {
 ne = dc.search(base, filter, sc);
 Entry entry = new Entry();

Listing 11.3 LDAPSearch.java
SEARCHING WITH JNDI 223

 // Use the NamingEnumeration object to cycle through
 // the result set.
 while (ne.hasMore()) {

 SearchResult sr = (SearchResult) ne.next();
 String name = sr.getName();
 if (base != null && !base.equals("")) {
 entry.setDN(name + "," + base);
 } else {

 entry.setDN(name);
 }

 Attributes at = sr.getAttributes();
 NamingEnumeration ane = at.getAll();
 while (ane.hasMore()) {
 Attribute attr = (Attribute) ane.next();
 String attrType = attr.getID();
 NamingEnumeration values = attr.getAll();
 Vector vals = new Vector();
 //Another NamingEnumeration object, this time
 // to iterate through attribute values.
 while (values.hasMore()) {
 Object oneVal = values.nextElement();
 if (oneVal instanceof String) {
 vals.addElement((String) oneVal);
 } else {
 vals.addElement(new String(
 (byte[]) oneVal));
 }
 }

 entry.put(attrType, vals);
 }
 results.addElement(entry);
 }
 lc.close(dc);

 // The search() method can throw a number of exceptions.
 // Here we just handle and print the exception.
 // In real life we might want to pass the exception along
 // to a piece of the software that might have a better
 // context for correcting or presenting the problem.
 } catch (InvalidSearchFilterException isfe) {
 System.err.println("Search Filter Invalid: " + filter);
 lc.close(dc);
 } catch (NameNotFoundException nnfe) {
 System.err.println("Object Not Found: " + base);
 lc.close(dc);
 } catch (NoPermissionException npe) {
 System.err.println("Search Failed: Permission Denied");
 lc.close(dc);
 } catch (CommunicationException ce) {
 System.err.println("Error Communicating with Server");
224 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

 lc.close(dc);
 } catch (NamingException nex) {
 System.err.println("Error: " + nex.getMessage());
 lc.close(dc);
 }

 return results;
 }
}

In chapter 4, we talk about search scopes. It is important to note that JNDI has
abstracted the names of these scopes from the ones you have used before. A search
scope of OBJECT is equal to an LDAP BASE search, whereas ONELEVEL and SUB-
TREE retain their name from LDAP:

 if (scope.equals("base")) {
 sc.setSearchScope(SearchControls.OBJECT_SCOPE);
 } else if (scope.equals("one")) {
 sc.setSearchScope(SearchControls.ONELEVEL_SCOPE);
 } else {
 sc.setSearchScope(SearchControls.SUBTREE_SCOPE);
 }

Now that you have all the search criteria, you can pass them to the search()
method on your DirContext object:

 ne = dc.search(base, filter, sc);

As you saw in the earlier example, the name of the entry returned does not include
the search base. This result can be confusing to people who have used other LDAP
APIs that return the full name. It is also usually not the desired behavior, because the
full distinguished name is needed in most cases to change an entry:

 entry.setDN(name + "," + base);

The getID() method on individual attributes returns the attribute type of the cur-
rent attribute:

 String attrType = attr.getID();

Some attributes are binary and will be returned as byte arrays. The instanceof
query helps you determine that attributes that reach this line are in fact binary and
lets you handle them specially. In this case, you turn such attributes into strings. If
this program displayed images, it might keep the values as byte arrays. If you expected
an object, you might use the byte array for serialization:

 if (oneVal instanceof String) {
 vals.addElement((String) oneVal);
 } else {
 vals.addElement(new String(
 (byte[]) oneVal));
 }
SEARCHING WITH JNDI 225

Now you place both the attribute type and values into the Entry object you cre-
ated earlier. Doing so allows other bits and pieces of your code to use the informa-
tion you just collected on a random-access basis without having to walk through
scores of enumerations:

 entry.put(attrType, vals);

11.5 ADDING ENTRIES

Adding entries to an LDAP-enabled directory using JNDI is relatively straightforward.
However, unlike the search operation, the add operation almost universally requires
the connection to be authenticated.

11.5.1 A simple add example

Fortunately, you already have the LDAPConnection class devised earlier in the
chapter for retrieving an authenticated connection from the server. You can easily do
this by setting the appropriate environment variables:

LDAPConnection lc = new LDAPConnection("cn=Admin","manager");
try {
 DirContext dc = lc.open();

Now that you’ve set up the context, you can focus on creating the set of attributes
that will be added to this entry. Let’s create a short example that creates an LDAP
entry that looks like the following snippet of LDIF:

dn: cn=Janet Smith, dc=manning, dc=com
cn: Janet Smith
sn: Smith
objectclass: person

JNDI makes this easy. To create the attributes, you first create a new instance of the
BasicAttributes class:

 Attributes attrs = new BasicAttributes();

Next, for each attribute you want included in the new entry, you create a new
BasicAttribute object. You then add the desired value or values to each attribute:

 Attribute cn = new BasicAttribute("cn");
 cn.add("Janet Smith");

 Attribute sn = new BasicAttribute("sn");
 sn.add("Smith");

 Attribute objectclass =
 new BasicAttribute("objectclass");
 objectclass.add("person");

Next, you simply add each attribute individually to the BasicAttributes object
you created earlier:
226 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

 attrs.put(cn);
 attrs.put(sn);
 attrs.put(objectclass);

Now that you’ve built your list of attributes, you can call the createSubcon-
text() method to add the entry to the directory. Note that the first argument is the
distinguished name of the entry. When you’re done, you close the connection, han-
dling any exceptions that might have been thrown in the creation of attributes or
communication with the directory:

 dc.createSubcontext(
 "cn=Janet Smith,dc=manning,dc=com", attrs);
 lc.close(dc);
 } catch (NamingException ne) {
 System.err.println("Error: " + ne.getMessage());
 }

Done! You now have a short example that shows the general pattern for adding
entries to the directory.

11.5.2 A generalized add example

The previous example offered the ability to add a specific entry. What if you simply
want a class that will take care of all the dirty work involved in adding an entry, with-
out mucking with the Attributes object? In the final search example, you put
data into an Entry object. There are many cases where you might want to use a sim-
ilarly simple object to create entries in the directory.

Let’s create a simple class that will take an Entry object as defined in
section 11.4.1 and add it to the directory (see listing 11.4).

import javax.naming.directory.*;
import javax.naming.*;
import java.util.Vector;
import java.util.Enumeration;

public class LDAPAdd {

 public static void add(Entry entry) {
 LDAPConnection lc = new LDAPConnection();
 DirContext dc = null;
 try {
 dc = lc.open();
 Attributes attrs = new BasicAttributes();
 Enumeration attrEnum = entry.keys();
 while (attrEnum.hasMoreElements()) {
 String type = (String) attrEnum.nextElement();
 Attribute oneAttr = new BasicAttribute(type);

 Vector vals = (Vector) entry.get(type);

 Enumeration valEnum = vals.elements();

Listing 11.4 LDAPAdd.java
ADDING ENTRIES 227

 while (valEnum.hasMoreElements()) {
 oneAttr.add((String) valEnum.nextElement());
 }
 attrs.put(oneAttr);
 }
 dc.createSubcontext(entry.getDN(), attrs);
 } catch (SchemaViolationException sve) {
 System.err.println("Schema Violation: " +

 sve.getMessage());
 } catch (InvalidAttributesException iae) {
 System.err.println("Invalid Attributes: " +
 iae.getMessage());
 } catch (NameAlreadyBoundException nabe) {
 System.err.println("Entry Already Exists: " +
 entry.getDN());
 } catch (NoPermissionException npe) {
 System.err.println("Access Denied to Add: " +
 entry.getDN());
 } catch (CommunicationException ce) {
 System.err.println(
 "Error communicating with the server");
 } catch (NamingException ne) {
 System.err.println("Error: " + ne.getMessage());
 }
 if (dc != null) {
 lc.close(dc);
 }
 }
}

In the previous example, you created each attribute individually. Here you walk
through each of the attributes in your Entry object, creating new Basic-
Attribute objects for each attribute:

 Attribute oneAttr = new BasicAttribute(type);

Next you must get the values for this attribute. Because attributes can be multivalued,
you store these values in a Vector within the Entry object. Here you get an enu-
meration of these values and walk through them:

 Vector vals = (Vector) entry.get(type);

Each value you encounter must be added to the BasicAttribute object you cre-
ated earlier in the code:

 oneAttr.add((String) valEnum.nextElement());

Once you’ve completed all the values for a particular attribute, you add that attribute
to the Attributes object that will contain the full list of attributes to be added:

 attrs.put(oneAttr);
228 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

11.6 MANIPULATING ENTRIES

Up to this point, we have discussed searching the directory and adding entries to it.
LDAP supports other operations that cover modification, deletion, and renaming of
entries in the directory. Because you’ve already seen some general patterns, this sec-
tion will help you quickly use what you’ve learned about the Attribute and Dir-
Context objects to perform these remaining operations.

11.6.1 Modifying entries

Like adding entries, modifying entries almost always requires an authenticated con-
nection to the server. This process also uses attributes that determine the values that
are added, replaced, and deleted from the specified entry.

The short bit of code in listing 11.5 follows the pattern of the previous full exam-
ples. This code modifies the directory entry you created in the add example from
listing 11.4.

import javax.naming.directory.*;
import javax.naming.*;
import java.util.Vector;
import java.util.Enumeration;

public class SimpleModify {

 public static void main(String[] args) {
 LDAPConnection lc = new LDAPConnection();
 try {
 DirContext dc = lc.open();

 ModificationItem[] mods = new ModificationItem[2];

 Attribute description = new BasicAttribute("description",
 "Janet Smith Description");
 Attribute sn = new BasicAttribute("sn","Smith");

 mods[0] = new ModificationItem(DirContext.ADD_ATTRIBUTE,
 description);
 mods[1] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
 sn);
 dc.modifyAttributes("cn=Janet Smith,dc=manning,dc=com",
 mods);

 lc.close(dc);
 } catch (NamingException ne) {
 System.err.println("Error: " + ne.getMessage());
 }
 }

}

Listing 11.5 SimpleModify.java
MANIPULATING ENTRIES 229

In this code you make two modifications. Because the modifyAttributes()
method takes an array of ModificationItem objects, you need to allocate the
number of changes you’ll be submitting:

 ModificationItem[] mods =
 new ModificationItem[2];

Now you create BasicAttribute objects exactly as you did in the previous sec-
tion. The difference here is how you use these attributes, not how they are created:

 Attribute description =
 new BasicAttribute("description",
 "Janet Smith Description");
 Attribute sn =
 new BasicAttribute("sn","Smith");

Note that you create a ModificationItem for each change. This is where the
code gets interesting. Each item associates a particular change type with the
Attribute objects you just created. The three types of changes available are add,
replace, and delete. The first change you perform is an add:

 mods[0] =
 new ModificationItem(DirContext.ADD_ATTRIBUTE,
 description);

Now you do a replace, which has the effect of removing any existing attributes prior
to adding the value you just assigned. If you had selected to delete the attribute value,
you would have specified DirContext.DELETE_ATTRIBUTE instead:

 mods[1] =
 new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
 sn);

Finally, you actually make the modification. The modifyAttributes() method
takes two arguments. The first is the distinguished name, and the second is your array
of ModificationItems:

 dc.modifyAttributes("cn=Janet Smith,dc=manning,dc=com",
 mods);

When you run the code, it adds values to the description attribute and replaces
any values in the sn attribute. It does so by creating an array of Modification-
Item objects. A ModificationItem holds both an attribute and the type of
change being made to that attribute.

11.6.2 Deleting entries

Entries can be deleted from the LDAP server quite easily. Restrictions in some prod-
ucts prevent the deletion of entries that have children, because the deletion of such
entries would cause a break in the namespace between the deleted entry’s parent and
children. Other than that, there are few issues.

Listing 11.6 is a short example that shows how to delete an entry.
230 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

import javax.naming.directory.*;
import javax.naming.*;
import java.util.Vector;
import java.util.Enumeration;

public class SimpleDelete {

 public static void main(String[] args) {
 LDAPConnection lc = new LDAPConnection();
 try {
 DirContext dc = lc.open();

 dc.destroySubcontext("cn=Janet Smith,dc=manning,dc=com");

 lc.close(dc);
 } catch (NamingException ne) {
 System.err.println("Error: " + ne.getMessage());
 }
 }

}

In this example, the destroySubcontext() method takes an argument that
specifies the distinguished name of the entry to delete. If the entry exists and you
have permission, the entry is deleted. Otherwise an exception is thrown.

11.6.3 Renaming entries

LDAP servers have varying degrees of capability when it comes to renaming entries.
Some servers, such as Microsoft Active Directory, have no problems even when
renaming entire subtrees. Many other directory products have restrictions that permit
only the renaming of leaf nodes—those entries that have no children.

The rename operation is one of the few completely new operations with LDAPv3;
earlier versions of the protocol only supported a rename in which the entry did not
change its location in the directory tree.

You can perform a rename with only a few lines of code. The first and last few lines
set up and tear down an authenticated connection; a single line actually performs the
modification. In listing 11.7, the bolded lines show how to rename an entry from
Janet Smith to Janet Jones.

import javax.naming.directory.*;
import javax.naming.*;
import java.util.Vector;
import java.util.Enumeration;

public class SimpleRename {

Listing 11.6 SimpleDelete.java

Listing 11.7 SimpleRename.java
MANIPULATING ENTRIES 231

 public static void main(String[] args) {
 LDAPConnection lc = new LDAPConnection();
 try {
 DirContext dc = lc.open();

 dc.rename("cn=Janet Smith,dc=manning,dc=com",
 "cn=Janet Jones,dc=manning,dc=com");

 lc.close(dc);

 } catch (NamingException ne) {
 System.err.println("Error: " + ne.getMessage());
 }
 }

}

This example renames an entry under the dc=manning,dc=com branch of the
directory. If you try to move the entry dc=manning,dc=com while the cn=Janet
Smith user is present in the directory, it is possible that the directory will refuse,
resulting in a NamingException. The standards do not require that servers be
capable of renaming entries that have leaf nodes.

You can get around this limitation by reading individual entries from one part of
the tree, adding them to another part of the tree, and deleting the entry from its orig-
inal place. Unfortunately, without standardized relational integrity or transactions,
both of these options permit situations that might cause the entry to exist in multiple
locations, with references to the entries in groups and other similar types of entries
being broken as well. For this reason, it is most important that you look back at the
discussion of namespace design in chapter 3 to ensure that such full subtree renaming
will not happen, or will happen very infrequently.

11.7 SUMMARY

JNDI is our interface of choice for accessing LDAP directories because it supports a
wide array of directory protocols, including LDAP, DNS, and NIS. As new directory
access mechanisms (such as DSML over SOAP) become more prevalent in web ser-
vices types of environments, JNDI’s layer of abstraction will be very useful. For exam-
ple, JNDI can help ensure that applications quickly adapt to these standards without
requiring substantial modification to do so.

JNDI uses DirContext objects to perform operations against the directory. All
LDAP operations are supported and, in this chapter, we looked at examples of search,
add, modify, delete, and rename functionality. We examined LDAP operations
throughout this chapter using a few example classes; we will return to these examples.

In the next chapter, you will use what you’ve learned about JNDI to access and
manipulate LDAP directory information in XML. The combination of Java and DSML
will simplify integration of LDAP directory information into XML-aware applications.
232 CHAPTER 11 ACCESSING LDAP DIRECTORIES WITH JNDI

C H A P T E R 1 2

Java programming
with DSML

12.1 Writing DSML with Java 234
12.2 DSML with JNDI 235
12.3 Working with schemas

in DSML 237

12.4 Transformation with XSLT
in Java 244

12.5 Enhancements with DSMLv2 248
12.6 Summary 252
In chapter 5, we introduced the DSML. In chapter 10, we looked at how you can
parse and create DSML files in Perl, which can be an important way of sharing direc-
tory information.

This chapter covers some of the basics of DSML manipulation in Java. However,
we’ll go beyond simply parsing and creating DSML documents and discuss the new
DSML operation capabilities in the latest DSML draft (DSMLv2).

By the end of this chapter, you will better understand the answers to the follow-
ing questions:

• What is the simplest way to create a DSML document in Java?

• How can DSML entries and schemas be retrieved using JNDI?

• In what ways can DOM be used instead of SAX to manipulate a large DSML file?

• What is new with DSMLv2 and how DSMLv2 operations are performed in Java?
233

12.1 WRITING DSML WITH JAVA

One way you can use DSML is to write it directly. This is by far the simplest way
when you’re dealing with new documents, because it does not require learning any
new APIs.

You can create such a DSML document by extending the Entry class you wrote
in chapter 11 to output DSML as its string representation; listing 12.1 shows this new
DSMLEntry class. This approach allows you to write out any entry as DSML relatively
easily. When you run the code, the output will look something like the following:

 <dsml:entry dn="cn=Janet Smith, dc=manning,dc=com">
 <dsml:objectclass>
 <dsml:oc-value>person</dsml:oc-value>
 <dsml:oc-value>top</dsml:oc-value>
 </dsml:objectclass>
 <dsml:attr name="sn">
 <dsml:value>Smith</dsml:value>
 </dsml:attr>
 <dsml:attr name="cn">
 <dsml:value>Janet Smith</dsml:value>
 </dsml:attr>
 </dsml:entry>

import javax.naming.directory.Attribute;
import java.util.Enumeration;
import java.util.Vector;

public class DSMLEntry extends Entry {

 public DSMLEntry() {
 }

 public DSMLEntry(Entry entry) {
 super(entry);
 }

 public String toString() {
 StringBuffer dsmlString = new StringBuffer();

 dsmlString.append("<dsml:entry dn=\"");
 dsmlString.append(getDN());
 dsmlString.append("\">\n");

 Vector ocs = (Vector) get("objectclass");
 if (ocs != null) {
 dsmlString.append(" <dsml:objectclass>\n");
 Enumeration enumOcs = ocs.elements();
 while (enumOcs.hasMoreElements()) {
 dsmlString.append(" <dsml:oc-value>");
 dsmlString.append((String) enumOcs.nextElement());
 dsmlString.append("</dsml:oc-value>\n");

Listing 12.1 DSMLEntry.java

Extend Entry
class from
chapter 11

Write
distinguished
name

Special
care for
objectclass
values
234 CHAPTER 12 JAVA PROGRAMMING WITH DSML

 }
 dsmlString.append(" </dsml:objectclass>\n");
 }

 Enumeration enumAttrs = keys();
 while (enumAttrs.hasMoreElements()) {
 String nextAttr = (String) enumAttrs.nextElement();
 if (!nextAttr.equalsIgnoreCase("objectclass")) {
 dsmlString.append(" <dsml:attr name=\"");

 dsmlString.append(nextAttr);
 dsmlString.append("\">\n");
 Enumeration valEnum = ((Vector)
 get(nextAttr)).elements();

 while (valEnum.hasMoreElements()) {
 dsmlString.append(" <dsml:value>");
 dsmlString.append(valEnum.nextElement());
 dsmlString.append("</dsml:value>\n");
 }
 dsmlString.append(" </dsml:attr>\n");
 }
 }
 dsmlString.append("</dsml:entry>\n");

 return dsmlString.toString();
 }

}

The DSMLEntry class can be instantiated by passing in a normal Entry object to
the constructor and manipulated using the same methods as the Entry class you cre-
ated in chapter 11. The difference is that the toString() method now returns a
string representation in DSML, rather than in an LDIF-like format.

You can add DSML output to your search code in chapter 11 by simply adding the
following line after retrieving an entry:

System.out.println(new DSMLEntry(entry).toString());

This piece of code causes the DSML version of the entry to be written directly to the
console. Doing so is useful if you are creating a file of DSML entries that will be
shared with other applications that are DSML aware.

12.2 DSML WITH JNDI

We covered JNDI in considerable detail in chapter 11. This interface allows you to
perform all the important LDAP operations from Java in a way that is somewhat
abstract from LDAP itself. JNDI offers the important ability to plug in different pro-
viders that support protocols other than LDAP without having to make structural
changes to your applications.

Filter out objectclass
attribute

Cycle through
and print values
DSML WITH JNDI 235

Sun has released an early access version of a JNDI provider that can handle some
DSML natively. This provider allows direct JNDI access to DSML-formatted files and
direct DSML output from an LDAP URL. Thus, rather than having to query using
LDAP and then transform the returned information into DSML, the provider takes
care of substituting DSML for LDAP.

For example, suppose you have an application that uses JNDI with the LDAP
provider, and you would like it to be able to access a server that is providing DSML
information via HTTP, rather than a server that exposes information natively with
LDAP. Thanks to the provider, you do not need to rewrite many of the key compo-
nents of the application to take advantage of the DSML service. This benefit is par-
ticularly important in software that needs to plug into enterprise environments,
because it is often nearly impossible to predict how an enterprise will expose its
directory information.

12.2.1 Automatic DSML output from LDAP URLs

In the first example in this chapter, we looked at how to manually generate XML. You
could easily have used various XML APIs to generate such a file manually, as well.
However, the DSML provider for JNDI offers a way to generate DSML entries and
schemas automatically. Listing 12.2 takes advantage of this capability by retrieving all
the entries in the LDAP server under the dc=manning,dc=com branch and print-
ing them as valid DSML entries.

import javax.naming.directory.InitialDirContext;
import javax.naming.directory.DirContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Hashtable;

public class JNDIDSMLSearch {

 public JNDIDSMLSearch() {
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.dsml.DsmlCtxFactory");

 env.put(Context.PROVIDER_URL,
 "ldap://localhost/dc=manning,dc=com??sub");

 env.put(Context.SECURITY_PRINCIPAL,"cn=Admin");
 env.put(Context.SECURITY_CREDENTIALS, "manager");

 try {
 DirContext ctx = new InitialDirContext(env);
 String dsmlresults = ctx.lookup("").toString();
 System.out.println(dsmlresults);
 ctx.close();
 } catch (NamingException ne) {

Listing 12.2 JNDIDSMLSearch.java

DSML provider
context factory

LDAP URL
to query

Credentials
forwarded to
LDAP server

Returns entries
as DSML
236 CHAPTER 12 JAVA PROGRAMMING WITH DSML

 System.err.println("Error: " + ne.getMessage());
 }

 }

 public static void main(String[] args) {
 new JNDIDSMLSearch();
 }
}

This example creates output that looks something like the following DSML:

 <dsml:directory-entries>
 <dsml:entry dn="cn=Janet Smith,dc=manning,dc=com">
 <dsml:objectclass>
 <dsml:oc-value>person</dsml:oc-value>
 <dsml:oc-value>top</dsml:oc-value>
 </dsml:objectclass>
 <dsml:attr name="sn">
 <dsml:value>Smith</dsml:value>
 </dsml:attr>
 <dsml:attr name="cn">
 <dsml:value>Janet Smith</dsml:value>
 </dsml:attr>
 </dsml:entry>
 <dsml:entry dn="dc=manning,dc=com">
 <dsml:objectclass>
 <dsml:oc-value>domain</dsml:oc-value>
 <dsml:oc-value>top</dsml:oc-value>
 </dsml:objectclass>
 <dsml:attr name="dc">
 <dsml:value>manning</dsml:value>
 </dsml:attr>
 </dsml:entry>
 </dsml:directory-entries>

Notice that the results contain multiple entries wrapped in dsml:directory-
entries tags. The first entry listed is the same one that appeared earlier in the
chapter—but in this example you have not written a single line of XML by hand.

12.3 WORKING WITH SCHEMAS IN DSML

As you learned in chapter 5, DSML represents schemas as well as entries. The DSML
provider for JNDI lets you take advantage of this functionality in much the same way
that you queried for entries natively with LDAP in chapter 11.

As with many aspects of working with DSML in Java, you have many choices about
how to build this functionality. The main choices are between the SAX-, DOM-, and
the DSML-handling capabilities of the DSML JNDI provider (which uses XML han-
dling under the covers).
WORKING WITH SCHEMAS IN DSML 237

Clearly, it is also possible to do this kind of parsing manually by writing custom
code to scan lines for opening and closing angle brackets. But with such great APIs that
do this kind of heavy lifting automatically, this approach doesn’t warrant discussion.

Generally, if you are reading in a large document and do not want to keep it all
in memory, you’ll use SAX. You might also use SAX if you’re looking to build your
own custom objects while you read the XML file and have little intention of making
changes to the file.

DOM’s strength is its ability to manage the XML/DSML document as if it were a
tree of Java objects. This approach makes it easier to change the DSML object.

Using the DSML provider for JNDI, you can spend more time focusing on the
information and less time worrying about the fact that the information is in DSML for-
mat. In many cases, this is preferable when the provider offers enough functionality
to get the job done. Otherwise you may still need to use the other two APIs for acting
on the DSML document directly.

In this section, we’ll focus primarily on using the SAX parser. Listings 12.6
and 12.9 show some basics of using the DSML provider for JNDI and the DOM APIs
respectively, although not specifically with schema information.

12.3.1 Reading schemas with SAX

As we just discussed, the SAX APIs tend to be the best approach when you’re handling
very large documents or when you’re parsing documents into custom objects as they
are read in. In this section, we’ll look at an example of how you can use the SAX APIs
in Java to automatically parse and print information from a DSML schema file.

Listing 12.3 shows the DSML file you will be parsing. It contains a definition of
the standard person object class.

<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">
 <dsml:directory-schema>
 <dsml:class
 id="person"
 type="structural"
 superior="#top">
 <dsml:name>person</dsml:name>
 <dsml:description></dsml:description>
 <dsml:object-identifier>2.5.6.6</dsml:object-identifier>
 <dsml:attribute ref="#sn" required="true"/>
 <dsml:attribute ref="#cn" required="true"/>
 <dsml:attribute ref="#userPassword" required="false"/>
 <dsml:attribute ref="#telephoneNumber" required="false"/>
 <dsml:attribute ref="#seeAlso" required="false"/>
 <dsml:attribute ref="#description" required="false"/>
 </dsml:class>
 </dsml:directory-schema>
</dsml:dsml>

Listing 12.3 DSMLSchema.xml
238 CHAPTER 12 JAVA PROGRAMMING WITH DSML

When the test program is run, it displays a simple textual representation of the con-
tents of important fields in the DSML schema definition; following is a sample of the
type of output generated. You can easily forego printing in favor of populating an
appropriate type of Java object that will let you use this information programmatically:

Superior: top
Structural Class

Object Class: person
OID: 2.5.6.6
Must Have Attribute: sn
Must Have Attribute: cn
May Have Attribute: userPassword
May Have Attribute: telephoneNumber
May Have Attribute: seeAlso
May Have Attribute: description

Now that you have a basic DSML file and the desired output defined, let’s look at the
code that drives the DSML parsing. Listing 12.4 shows the DSMLSchema class,
which is responsible for setting up the SAX parser and passing in the DSML schema
file to be parsed as well as a handler that knows how to parse DSML schemas.

import org.xml.sax.SAXException;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.ParserConfigurationException;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class DSMLSchema {

 public static void main(String[] args) {
 new DSMLSchema().read(args[0]);
 }

 public DSMLSchema() {
 }

 public void read(String filename) {

 SAXParser parser = null;

 try {
 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setNamespaceAware(true);
 spf.setValidating(true);
 parser = spf.newSAXParser();

 SchemaXMLHandler handler = new SchemaXMLHandler();

 FileInputStream fis = new FileInputStream(filename);
 parser.parse(fis,handler,filename);

Listing 12.4 DSMLSchema.java
WORKING WITH SCHEMAS IN DSML 239

 } catch (ParserConfigurationException pce) {
 System.err.println("Parser Configuration Error: " +
 pce.getMessage());
 } catch (FileNotFoundException fnfe) {
 System.err.println("File Not Found: " + filename);
 } catch (IOException ioe) {
 System.err.println("Error reading XML file: " +
 ioe.getMessage());

 } catch (SAXException se) {
 System.err.println("SAX Error: " + se.getMessage());
 }
 }
}

Notice that this listing needs a handler. You specify one called SchemaXMLHand-
ler, which you now need to create. This handler will be called every time a new
XML element or text element is found. It will be responsible for keeping state infor-
mation necessary to properly parse the DSML file, as well as performing any desired
actions when a particular element is found.

12.3.2 Designing a basic SAX handler

One possible version of a SAX handler is shown in listing 12.5. This handler parses
both object class and attribute type information. Although it only prints the informa-
tion as it is parsed, it can easily be extended to populate other objects or perform
other actions as desired.

import org.xml.sax.Attributes;
import org.xml.sax.helpers.DefaultHandler;

public class SchemaXMLHandler extends DefaultHandler {

 // Since some DSML elements are common between object classes
 // and attribute types, we need to maintain state about which
 // type of element we are currently parsing.
 private static final int DSML_OC = 0;
 private static final int DSML_AT = 1;
 private int currentType = DSML_OC;

 // Various states that can exist within an object class or
 // attribute type definition.
 private static final int OP_IGNORE = 0;
 private static final int OP_NAME = 1;
 private static final int OP_DESC = 2;
 private static final int OP_OID = 3;
 private static final int OP_SYNTAX = 4;
 private static final int OP_SINGLEVAL = 5;
 private static final int OP_USERMOD = 6;
 private static final int OP_EQUALITY = 7;

Listing 12.5 SchemaXMLHandler.java

Need to extend
DefaultHandler

State variable for
class/attribute
240 CHAPTER 12 JAVA PROGRAMMING WITH DSML

 private static final int OP_ORDERING = 8;
 private static final int OP_SUBSTRING = 9;

 private int currentOp = OP_IGNORE;

 public void characters(char[] ch, int start,
int length) {

 String text = new String(ch, start, length);

 // Name, OID, and description are places within an object
 // class definition where we care about character text.
 if (currentType == DSML_OC && text != null) {
 if (currentOp == OP_NAME) {
 System.out.println("\nObject Class: " + text);
 }
 if (currentOp == OP_DESC) {
 System.out.println("Description: " + text);
 }
 if (currentOp == OP_OID) {
 System.out.println("OID: " + text);
 }
 }

 // These characters occur within attribute type definitions

 if (currentType == DSML_AT && text != null) {
 if (currentOp == OP_NAME) {
 System.out.println("\nAttribute Type: " +text);
 }
 if (currentOp == OP_DESC) {
 System.out.println("Description: " + text);
 }
 if (currentOp == OP_OID) {
 System.out.println("OID: " + text);
 }
 if (currentOp == OP_EQUALITY) {
 System.out.println("Matching Rule (Equality): "
 + text);
 }
 if (currentOp == OP_USERMOD) {
 if (text.equalsIgnoreCase("false")) {
 System.out.println("NO User Modifications");
 }
 }
 if (currentOp == OP_SINGLEVAL) {
 if (text.equalsIgnoreCase("true")) {
 System.out.println("Single Valued");
 }
 }

 if (currentOp == OP_SYNTAX) {
 System.out.println("Syntax: " + text);
 }

 if (currentOp == OP_ORDERING) {

State variable for
current operation

Receives characters
that are not part of
an element definition
WORKING WITH SCHEMAS IN DSML 241

 System.out.println("Matching Rule (Ordering): " +
 text);
 }

 if (currentOp == OP_SUBSTRING) {
 System.out.println("Matching Rule (Substring): " +
 text);
 }
 }
 currentOp = OP_IGNORE;
 }

 public void endElement(String scratch1, String scratch2,
String name) {

 if (name.equals("dsml:class") ||
 name.equals("dsml:attribute-type")) {
 System.out.println("\n");
 }
 currentOp = OP_IGNORE;
 }

 public void startElement(String scratch1, String scratch2,
 String name, Attributes atts) {

 // Check for the start of a new object class definition
 if (name.equals("dsml:class")) {
 currentType = DSML_OC;

 String superior = atts.getValue("superior");
 if (superior != null) {
 System.out.println("Superior: " +
 superior.substring(1));
 }
 String ocType = atts.getValue("type");
 if (ocType != null) {
 if (ocType.equals("abstract")) {
 System.out.println("Abstract Class");
 } else if (ocType.equals("auxiliary")) {
 System.out.println("Auxiliary Class");
 } else {
 System.out.println("Structural Class");
 }
 }
 }

 // Check for elements that occur within an
 // object class definition
 if (name.equals("dsml:name")) {
 currentOp = OP_NAME;
 }

 if (name.equals("dsml:description")) {
 currentOp = OP_DESC;
 }

Called when
an XML
element ends

Called when an XML
element begins
242 CHAPTER 12 JAVA PROGRAMMING WITH DSML

 if (name.equals("dsml:object-identifier")) {
 currentOp = OP_OID;
 }

 // The attribute element within an object class definition
 if (name.equals("dsml:attribute") &&
 currentType == DSML_OC) {
 String ref = atts.getValue("ref");
 String req = atts.getValue("required");

 if (req != null && ref != null && req.equals("true")) {
 System.out.println("Must Have Attribute: " +
 ref.substring(1));
 } else if (ref != null) {
 System.out.println("May Have Attribute: " +
 ref.substring(1));
 }
 }

 // Check to see if we're starting a new
 // attribute type definition
 if (name.equals("dsml:attribute-type")) {
 currentType = DSML_AT;

 String superior = atts.getValue("superior");
 if (superior != null) {
 System.out.println("Superior: " +
 superior.substring(1));
 }
 }

 // The rest of these checks check to see if we're within an
 // attribute type definition and the element name is set to
 // a particular value.

 if (name.equals("dsml:name") && currentType == DSML_AT) {
 currentOp = OP_NAME;
 }

 if (name.equals("dsml:description") &&
 currentType == DSML_AT) {
 currentOp = OP_DESC;
 }

 if (name.equals("dsml:syntax") && currentType == DSML_AT) {
 currentOp = OP_SYNTAX;
 }

 if (name.equals("dsml:object-identifier") &&
 currentType == DSML_AT) {
 currentOp = OP_OID;
 }

 if (name.equals("dsml:single-value") &&
 currentType == DSML_AT) {
 currentOp = OP_SINGLEVAL;
 }
WORKING WITH SCHEMAS IN DSML 243

 if (name.equals("dsml:user-modification") &&
 currentType == DSML_AT) {
 currentOp = OP_USERMOD;
 }

 if (name.equals("dsml:equality") &&
 currentType == DSML_AT) {
 currentOp = OP_EQUALITY;
 }

 if (name.equals("dsml:ordering") &&
 currentType == DSML_AT) {
 currentOp = OP_ORDERING;
 }

 if (name.equals("dsml:substring") &&
 currentType == DSML_AT) {
 currentOp = OP_SUBSTRING;
 }
 }
}

If you now start the DSMLSchema class with this handler, you will see the output just
as it was defined earlier in this section.

12.4 TRANSFORMATION WITH XSLT IN JAVA

In chapter 5, we discussed the ability to transform XML documents, including those
using the DSML specification, using XSLT. In chapter 11, we looked at an example of
doing this from the command line in Perl. In this section, we’ll look at how using
DSML can make it easier to programmatically create new documents, such as the one
shown in figure 12.1.

Figure 12.1

Potential output of DSML when trans-

formed via XSLT into HTML and viewed

with a web browser
244 CHAPTER 12 JAVA PROGRAMMING WITH DSML

You can achieve many output variations based on the same DSML data by using XML
stylesheets that are used by XSLT-processing APIs. Listing 12.6 contains a Java servlet
that can be run on most web servers. This servlet reads a stylesheet file and provides
the translated version of a query as output to client applications. This example takes
advantage of the DSML provider for JNDI to do the actual query using an LDAP URL
and get DSML-formatted results.

import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.Transformer;
import javax.xml.transform.Source;
import javax.xml.transform.TransformerFactory;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.naming.directory.DirContext;
import javax.naming.directory.InitialDirContext;
import java.util.StringTokenizer;
import java.util.Vector;
import java.util.Enumeration;
import java.util.Hashtable;
import java.net.URL;
import java.io.ByteArrayInputStream;
import java.io.PrintWriter;
import java.io.ByteArrayOutputStream;

public class DSMLXSLT extends javax.servlet.http.HttpServlet {

 // Change this path as necessary to the XSL file
 public String myxsl = "file:d:\\Manning\\html.xsl";

 // If we do an HTTP GET or POST operation, send the request
 //to the performTask method.

 public void doGet(
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException {
 performTask(request, response);
 }

 public void doPost(
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)
 throws javax.servlet.ServletException,
 java.io.IOException {
 performTask(request, response);
 }

 public String getServletInfo() {
 return super.getServletInfo();

Listing 12.6 DSMLXSLT.java
TRANSFORMATION WITH XSLT IN JAVA 245

 }

 // If we were doing searches rather than
 // reading from a file, we might
 // initialize connection information or a connection pool here.
 public void init() {
 }

 // This is the method that does the heavy lifting.

 public void performTask(
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response) {

 try {

 String base = request.getParameter("base");
 String filter = request.getParameter("filter");
 String scope = request.getParameter("scope");
 String attrs = request.getParameter("attrs");
 String xsl = request.getParameter("xsl");

 if (scope == null) {
 scope = "base";
 }
 if (filter == null) {
 filter = "(objectclass=*)";
 }
 if (base == null) {
 base = "";
 }

 if (attrs == null) {
 attrs = "";
 }

 // We'll be creating an HTML document
 response.setContentType("text/html");

 PrintWriter out = response.getWriter();
 ByteArrayOutputStream baos =
 new ByteArrayOutputStream();

 baos.write(
 "<dsml:dsml xmlns:dsml=\"http://www.dsml.org/DSML\">"
 .getBytes());

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.dsml.DsmlCtxFactory");

 env.put(Context.PROVIDER_URL,
 "ldap://localhost/" + base +
 "?" + attrs +
 "?" + scope + "?" + filter);

 env.put(Context.SECURITY_PRINCIPAL, "cn=Admin");

Create LDAP URL
for query
246 CHAPTER 12 JAVA PROGRAMMING WITH DSML

 env.put(Context.SECURITY_CREDENTIALS, "manager");

 String dsmlresults = null;

 try {
 DirContext ctx = new InitialDirContext(env);
 dsmlresults = ctx.lookup("").toString();
 ctx.close();
 } catch (NamingException ne) {

 System.err.println("Error: " + ne.getMessage());
 System.exit(0);
 }

 baos.write(dsmlresults.getBytes());

 baos.write("</dsml:dsml>".getBytes());
 byte[] dsmlbytes = baos.toByteArray();
 baos.close();

 ByteArrayInputStream bais =
 new ByteArrayInputStream(dsmlbytes);
 TransformerFactory tFactory =
 TransformerFactory.newInstance();

 Source xmlSource = new StreamSource(bais);

 Source xslSource =
 new StreamSource(new URL(myxsl).openStream());

 Transformer transformer =
 tFactory.newTransformer(xslSource);

 transformer.transform(xmlSource,
 new StreamResult(out));
 } catch (Throwable theException) {
 theException.printStackTrace();
 }
 }
}

With the servlet coded, the only thing missing is a working stylesheet. In listing 12.6,
you can specify the stylesheet using a query string in the HTTP GET or POST opera-
tion; the example will default to a stylesheet called html.xsl. Listing 12.7 shows a
working stylesheet that will do basic conversion of DSML into HTML.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns="http://www.w3.org/TR/REC-html40"
 xmlns:dsml="http://www.dsml.org/DSML">

<xml:output method="html" indent="yes"/>

Perform
lookup

Dump DSML output
to output stream

Specify XML
source

Open
stylesheet

Perform
transformation

Listing 12.7 html.xsl
TRANSFORMATION WITH XSLT IN JAVA 247

 <xsl:template match="/">
 <html>
 <head>
 <title>Results</title>
 </head>
 <body>
 <h1>Results</h1>
 <xsl:for-each
 select="dsml:dsml/dsml:directory-entries/dsml:entry">
 <h4>
 <xsl:value-of select="@dn"/>
 </h4>
 <table border="1">
 <xsl:for-each select="dsml:attr">
 <tr>
 <th>
 <xsl:value-of select="@name"/>
 </th>
 <xsl:for-each select="dsml:value">
 <td>
 <xsl:value-of select="."/>
 </td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

12.5 ENHANCEMENTS WITH DSMLV2

Up until now, our discussion has focused primarily on functionality described in
DSMLv1. That version discusses only the representation of directory entry and
schema information in XML.

DSMLv2 is a newer standard that has emerged to take integration between XML
and directories to the next level. It does so by providing the ability to perform nearly
all LDAP operations in XML. These operations can then be transmitted via messages
or RPCs to another DSMLv2-aware application, extending the reach of directory infor-
mation along the way.

DSMLv2 operations are based completely on LDAP counterparts; all arguments
to DSMLv2 operation elements mirror those in LDAP. Thus everything you’ve
learned about LDAP’s information model and operations applies directly to
DSMLv2 operations.

Why bother with DSMLv2 operations when LDAP already exists and has much
broader acceptance? The answer is web services. Although many applications will
248 CHAPTER 12 JAVA PROGRAMMING WITH DSML

continue to use LDAP as their primary means of accessing directory information,
the advent of formal web services around HTTP, SOAP, XML, and other standards
makes it easier to use a standard like DSML, because DSMLv2 is based on those
same standards.

12.5.1 Implementing interapplication communication

It is becoming impossible to talk about RPCs in Java without bringing up the SOAP
standard. SOAP has emerged as the most widely advocated, if not accepted, standard
for enabling the kind of interapplication communication that will form the basis for
web services.

DSMLv2 lists SOAP as one possible avenue for transmitting these new DSML oper-
ations. It is equally possible to simply send the operations in email or via messaging-
oriented middleware (MOM), but we will focus our energy on SOAP over HTTP in
this section.

12.5.2 Creating DSMLv2 SOAP requests

Because DSMLv2 operations are encoded as SOAP requests, it makes sense to take a
quick peek at what these operations look like once they’ve been encoded. Listing 12.8
shows an add request in DSMLv2.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=
 http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <dsml:batchRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">

 <dsml:addRequest dn="cn=George Smith,dc=manning,dc=com">
 <dsml:attr name="objectclass">
 <dsml:value>person</dsml:value>
 </dsml:attr>
 <dsml:attr name="cn">
 <dsml:value>George Smith</dsml:value>
 </dsml:attr>
 <dsml:attr name="sn">
 <dsml:value>Smith</dsml:value>
 </dsml:attr>
 </dsml:addRequest>
 </dsml:batchRequest>
</SOAP-ENV:Body></SOAP-ENV:Envelope>

If you look carefully at this add request, you’ll see that it can be divided into two main
parts. First is the SOAP envelope: this information wraps the dsml:addRequest.
element and gives the context needed by the recipient to direct to the correct service.

Listing 12.8 DSML SOAP Add.xml
ENHANCEMENTS WITH DSMLV2 249

The second part begins with the dsml:addRequest element and specifies the dis-
tinguished name and attributes associated with the add operation. This is exactly the
information required to do an LDAP add operation—but instead of the underlying
system encoding the operation as ASN.1 structures, per the LDAP standards, you
encode this same information as XML.

Listing 12.9 for the DSMLSOAPAdd class posts a properly formatted DSMLv2 add
request to a hypothetical DSMLv2 service. It requires the Apache AXIS API package
for handling SOAP messages and uses DOM (discussed earlier in the chapter) to build
the request.

import org.apache.axis.client.ServiceClient;
import org.apache.axis.AxisFault;
import org.apache.axis.utils.QName;
import org.apache.axis.message.RPCParam;
import org.apache.axis.message.SOAPEnvelope;
import org.apache.axis.message.SOAPBodyElement;
import org.w3c.dom.Element;
import org.w3c.dom.Document;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

public class DSMLSOAPAdd {

 public static void main(String[] args) {
 // We would change this to point to a real server capable of
 // processing this request.
 String endpoint = "http://localhost/dsml2service";

 // Some sample entry data to add.
 String dn = "cn=George Smith,dc=manning,dc=com";
 String cnvalue = "George Smith";
 String snvalue = "Smith";

 try {
 ServiceClient client = new ServiceClient(endpoint);
 SOAPEnvelope se = new SOAPEnvelope();

 DocumentBuilderFactory factory = DocumentBuilderFactory
 .newInstance();
 Document document = null;

 try {
 DocumentBuilder builder =
 factory.newDocumentBuilder();

 document = builder.newDocument();

 } catch (ParserConfigurationException pce) {
 System.err.println("Parse Error: " +
 pce.getMessage());

Listing 12.9 DSMLSOAPAdd.java

Create SOAP client
connected to endpoint

Build new DOM
document
250 CHAPTER 12 JAVA PROGRAMMING WITH DSML

 System.exit(0);
 }

 Element br =
 (Element) document.createElement("dsml:batchRequest");
 br.setAttribute("xmlns:dsml",
 "urn:oasis:names:tc:DSML:2:0:core");

 Element ar = (Element) document
 .createElement("dsml:addRequest");

 ar.setAttribute("dn", dn);
 ar.appendChild(document.createTextNode("\n"));
 br.appendChild(ar);

 Element oc = (Element)
 document.createElement("dsml:attr");
 oc.setAttribute("name","objectclass");

 Element ocval = (Element)
 document.createElement("dsml:value");
 ocval.appendChild(document.createTextNode("person"));
 oc.appendChild(ocval);

 Element cn = (Element)
 document.createElement("dsml:attr");
 cn.setAttribute("name","cn");

 Element cnval = (Element)
 document.createElement("dsml:value");
 cnval.appendChild(document.createTextNode(cnvalue));
 cn.appendChild(cnval);

 Element sn = (Element)
 document.createElement("dsml:attr");
 sn.setAttribute("name","sn");

 Element snval = (Element)
 document.createElement("dsml:value");
 snval.appendChild(document.createTextNode(snvalue));
 sn.appendChild(snval);

 ar.appendChild(oc);
 ar.appendChild(cn);
 ar.appendChild(sn);

 SOAPBodyElement sb = new SOAPBodyElement(br);

 se.addBodyElement(sb);

 client.invoke(se);

 } catch (AxisFault af) {
 System.err.println("Error: " + af.getMessage());
 }
 }
}

Beginning of
add request

Add document to
SOAP envelope

Send request to
connected endpoint
ENHANCEMENTS WITH DSMLV2 251

When run, this class creates a DSMLv2 add request and transmits it to the connected
endpoint. At the time of this writing, no DSMLv2 services are available to process
such requests; however, these types of services will likely arise primarily as front-ends
to information that currently exists in LDAP-enabled directories.

You can currently check the code output for general validity by using the various
SOAP proxy services available that can intercept a SOAP request and print its contents.
Doing so demonstrates that the proper message is being transmitted.

Until more DSMLv2 services are available, the DSMLv2 standard offers little
beyond the features we’ve discussed as being available in the DSMLv1 specification.

12.5.3 Creating DSMLv2 SOAP requests with JNDI

Just as this book was going to press, an early-access DSMLv2 provider was released
that allows JNDI-enabled applications to make DSMLv2 requests as easily as they
make LDAP requests. Thanks to the magic of JNDI abstraction, most of our JNDI
examples work with almost no modification.

The example from section 11.3 that creates an LDAP connection could be easily
changed to the following lines of code:

Properties env = new Properties();
env.put(DirContext.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.dsmlv2.soap.DsmlSoapCtxFactory");
env.put(DirContext.PROVIDER_URL,"ldap://localhost:8080");
DirContext dirContext = new InitialDirContext(env);

Assuming a server was listening for DSMLv2 requests over HTTP on port 8080, any
further JNDI requests on the dirContext object would be performed using DSML
rather than LDAP.

12.6 SUMMARY

In this chapter, you discovered new ways to access and manipulate documents using
DSML. We covered using JNDI to access both DSMLv1- and DSMLv2-compliant
servers, as well as techniques for using the DOM APIs for XML to manipulate poten-
tially large DSML files. We provided Java code for using XSLT to transform DSML
into HTML, as an example of the power that existing XML APIs can provide to direc-
tory-enabled applications. Finally, we discussed improvements with DSMLv2 and
used Java to create an example SOAP message that encapsulates a DSMLv2 operation.

In chapter 13, we take a detailed look at enterprise information security as it relates
to and uses LDAP-enabled directory services.
252 CHAPTER 12 JAVA PROGRAMMING WITH DSML

C H A P T E R 1 3

Application security and
directory services

13.1 The relationship between security and directories 254
13.2 Storing key and certificate data 259
13.3 Using digital certificates 262
13.4 Managing authorization information 268
13.5 Encrypting LDAP sessions using JNDI and SSL 270
13.6 Summary 271
Security is a vast topic that means many things to many people. In this chapter, we
will look at how applications can leverage directories to provide security services.
We’ll also explore the relationship between directories and security services.

By the end of this chapter, you will have learned the answers to these questions:

• What is security, and how does it relate to directories?

• How can directories most effectively enable different types of security?

• How can an LDAP server be used for authentication?

• What are the limitations of private keys when used for authentication? How can
certificates help?

• How can certificates be generated and stored in the directory?

• What is necessary to enable session encryption in JNDI?
253

13.1 THE RELATIONSHIP BETWEEN SECURITY
AND DIRECTORIES

There are many misconceptions about the role directories play in securing an envi-
ronment. To avoid these pitfalls, we will briefly look at what security really entails and
then explore the relationship between security and directory services.

13.1.1 What is security?

In computing, security is a broad term. It tends to imply that information and func-
tionality are available to those who should be able to access them and unavailable
to those who shouldn’t have access. Although this is true, application security can
be summed up as comprising several components: authentication, authorization,
privacy, availability, and integrity. Table 13.1 briefly summarizes these security-
related components.

Figure 13.1 shows how all these components come together to form a secure comput-
ing environment.

Note that from a user’s perspective, the end goal is to get access to the desired appli-
cation functionality or information. What happens in between is merely overhead that
allows access to happen in a way that reduces the risk of unauthorized individuals gain-
ing access to inappropriate resources.

Table 13.1 Security involves a number of important components

Security

component
Definition

Authentication The process of identifying who is attempting to access a particular set of resources.
When you connect to the directory and do a bind, you let the server know who you
are by passing an identity and credentials that prove your identity.

Authorization The process of evaluating whether the authenticated entity is authorized to do
something to a particular resource under a defined set of circumstances. For exam-
ple, after you authenticate to a bank ATM using a plastic card and matching PIN
number, the machine uses a set of predefined rules to determine that you can only
access the two accounts associated with your authenticated identity.

Privacy The anonymity and secrecy of information. When you fill out a form on the Internet
with personal information, you expect that data to remain private. Similarly, when
you’re transmitting a credit card number or password over the Internet, you need to
ensure that it remains a secret from anyone who might be spying on Internet data.

Availability Continuous, uninterrupted service. When hackers deface a web site or use denial-
of-service (DOS) attacks to make a service unreachable, the availability of the infor-
mation provided by that service is affected while the site is repaired.

Integrity The assurance that information has not been changed or corrupted by an unautho-
rized party. Viruses can affect the integrity of a system by adding information to a
document that can produce undesired, potentially damaging, results.
254 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

Assessing security risks to your environment

Although security includes many components, it’s important to keep in mind that
security is rarely perfect and should never be viewed as an all-or-nothing proposition.
For example, an application that allows people to look at general-purpose news on a
subscription basis will suffer little damage if a hacker finds a password and looks at
the site for free. On the other hand, an application that allows someone to make
financial transactions is a more enticing target and susceptible to greater damage.

The differences noted are linked directly to risk. The single most important aspect
of security is risk evaluation and reduction. Different environments have different
levels of need for the types of security we’ve defined. In the two examples we just
gave, the first situation might need simple logins and passwords with few control pro-
cesses, and the second might require biometric authentication mechanisms for high
value transactions.

The actual level to which the various components of application security are
required is also dependent on risk. Consider the following scenarios:

• A public web site that provides general-purpose news for free may only be
interested in knowing that someone accessed the site, not who that person is.
In this instance, authentication and authorization are fairly low needs; a much
higher need exists for ensuring availability and integrity of the news service to
the public.

• Two CEOs communicating about a possible merger need privacy and integrity,
as well as basic levels of availability. Privacy ensures that competitors and inves-
tors cannot eavesdrop on this information, and integrity assures each CEO that
they are not speaking with an impostor.

Who Are You?

Prove it!

Authentication

Encryption

Digital Signatures

Privacy/
Integrity

Authorization

Availability

End-to-End Access

A
ccess to
W

hat?

Figure 13.1 An environment that includes all the security elements
THE RELATIONSHIP BETWEEN SECURITY AND DIRECTORIES 255

Certain top-secret information may be so sensitive that all other factors are given higher
priority than availability. In some cases, the risk associated with the unauthorized access
is so high that complete service interruption or self-destruction is preferable.

13.1.2 How LDAP provides security

LDAP is not an authentication service, nor is it an authorization service. LDAP also
does not directly affect availability, provide any layer of privacy, or ensure data integ-
rity outside the directory itself. Why is it, then, that people so often find their way to
directory services when trying to implement solutions related to security?

Although LDAP is not an authentication service, it stores the identities and cre-
dentials used by those services, and many applications can use LDAP as an authenti-
cation service if one is not available. LDAP aids in authorization because it acts as a
network-accessible data store for access control lists and policies that can be used to
authorize access to resources.

Public key cryptography allows applications and people to authenticate and secure
information without either party having previously shared the secret code that is used
in the process. Strong data privacy and integrity are made possible by public key
cryptography, and directories play a vital role in distributing the information needed
to make many aspects of public key cryptography work on a large scale. We will dis-
cuss public key cryptography and the critical role directories play with this technol-
ogy in section 13.2.

Finally, a properly distributed directory, when used for storing and providing access
to information, can increase overall availability of the applications that depend on it.

Figure 13.2 shows how some off-the-shelf authentication and authorization ser-
vices use directories to store credentials, policies, and access controls.

It is important to note that it is not necessary to have those services if the applica-
tion itself is sufficiently aware of how to use that information. Using the information
in the directory this way is perfectly acceptable, and applications that do so in a few

Authentication Service

Authorization Service

Applications

Directory Service
- Credentials

- Policies
- ACLs

General LDAP
Directory Access

Can John access
Customer Support

Area?

Is John with

Password X va
lid? LDAP

LDAP

Figure 13.2 Directories provide information to external authentication and authorization services.
256 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

standard ways will be compatible with off-the-shelf variants to a great degree. We will
walk through using the directory directly from your applications later in the chapter.

LDAP authentication support

Just because LDAP directories are not external authentication services does not mean
they do not perform authentication. In fact, much of the recent work related to
LDAP has been to strengthen the authentication mechanisms available.

The bind operation allows an LDAP client to authenticate. This in turn allows the
LDAP server to authorize access to a set of entries and attributes based on any access
control lists it may be using. Figure 13.3 shows this process.

LDAP has long supported anonymous and simple authentication. Anonymous means
exactly what it sounds like, and simple authentication means that passwords are trans-
mitted in the clear over the network.

Earlier LDAP vendors added a level of security in the form of SSL encryption, which
allows passwords to be encrypted by the virtue of having encryption for the entire ses-
sion. SSL also adds the ability to authenticate the server using certificates.

More recent standards have required support for the SASL, which allows client and
server to negotiate and use different mechanisms to authenticate each other.

Using LDAP as an authentication service

Applications presenting valid credentials to an LDAP server via the LDAP bind opera-
tion are informed that the credentials passed were valid. This bit of functionality has
long been used to allow applications to check the password presented by a user
against the one stored in the directory. Thus, although LDAP is not a true authentica-
tion service, applications can use it to provide this service as shown in figure 13.4.
Most applications that offer to use LDAP as an authentication service do so exactly as
we’ve just described. By using the bind operation instead of comparing the value
stored in the userPassword attribute or other locations, the application can check
the validity of credentials provided by a user without needing to worry about the lack
of password encryption standards.

Application Directory Service

Authenticate as John

Request Paul's Entry

Return Paul's Entry
Without userPassword

Figure 13.3 The directory service knows that the application user is John,

based on an LDAP bind request. It determines that John is not allowed to

see Paul’s password.
THE RELATIONSHIP BETWEEN SECURITY AND DIRECTORIES 257

The example in listing 13.1 shows how LDAP can be used to check the validity of
a password.

import javax.naming.directory.DirContext;
import javax.naming.NamingException;
import java.util.Vector;

public class LDAPLogin {

 private static final String USERID_ATTRIBUTE = "uid";
 private static void main(String args[]) {
 if (args.length != 2) {
 System.err.println("Must give userid and password");
 }
 boolean result = LDAPLogin.login(args[0],args[1]);

 if (result) {
 System.out.println("Login as " +
 args[0] + " was successful!");
 } else {
 System.out.println("Login as " +
 args[0] + " was incorrect!");
 }
 }

 public static boolean login(String username, String password) {
 LDAPConnection lc = new LDAPConnection();
 String dn = null;
 //Filter construction for search on UID
 String filter = new String("(" + USERID_ATTRIBUTE + "=" +
 username + ")");

 try {
 DirContext dc = lc.open();
 // Perform the search
 Vector results = LDAPSearch.search("","sub",filter,
 new String[0]);
 // If we get more than one result, the userid given was
 // not unique. If no result is returned, the userid
 // given was invalid.
 if (results.size() != 1) {
 return false;

User

Application

I am Bob
with "password" Directory

Service

Bind as Bob,
using "password"

Success!You are Bob!

Figure 13.4 Using LDAP as an authentication service

Listing 13.1 LDAPLogin.java

Set attribute
for UserID
comparison

Take two
arguments:

login and
password
258 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

 }

 Entry entry = (Entry)results.elementAt(0);
 dn = entry.getDN();
 lc.close(dc);
 } catch (NamingException ne) {
 // Error getting initial anonymous connection
 System.err.println("Error connecting to server.");
 return false;

 }

 lc = new LDAPConnection(dn,password);
 try {
 DirContext dc = lc.open();
 lc.close(dc);
 } catch (NamingException ne) {
 // Error Logging in
 return false;
 }
 return true;
 }
}

This technique allows passwords to be checked against the contents of a Novell direc-
tory or an IBM directory, even though both of these directories use different password
encryption techniques. The limitation of this technique is that many authentication
mechanisms cannot be supported this way. For example, a web server does not have a
person’s private key, so it is unable to bind to the directory server on the user’s behalf
if it wants to authenticate using public key infrastructure. So, it is up to the web
server or a trusted authentication service to perform the validation.

13.2 STORING KEY AND CERTIFICATE DATA

Storage of user credentials is one of the most popular uses of directory services. As we
discussed earlier in the chapter, these credentials form the basis for many aspects of
security, but are particularly important for authentication and authorization. Many
types of credentials can be stored in an LDAP-enabled directory. The types we will
discuss here include preshared secret keys and the digital certificates used in public
key cryptography.

13.2.1 Preshared secret keys

The most common credentials used today are preshared secret keys. These keys
include passwords that both parties need to know in advance for successful authenti-
cation to occur.

The userPassword attribute type is used to associate a password with an entry.
However, the value of this attribute may be in any format, because the syntax is simply
defined as being a binary string.

Get DN from
only returned
entry

Open connection
using DN and
password

Failed connection indicates incorrect
password; successful connection
indicates correct password
STORING KEY AND CERTIFICATE DATA 259

Such ambiguity makes it difficult for an
external authentication service to compare
the password provided by an end user with
an encrypted password in the directory. To
mitigate this potential issue, convention
dictates that a password is stored in plain
text unless it is prefixed by the encryption
algorithm used. Figure 13.5 shows how
this process works.

Of course, the application may not be familiar with the type of encryption algorithm
used to store the password. In other instances, a comparison cannot be performed
using the LDAP compare operation because the client does not have access to the
entire context necessary to generate the encrypted version of the shared secret. For
instance, in the “crypt” example in figure 13.5, the first two characters are a salt—
random characters—that impacts the final encrypted value.

Problems with secret keys

The problem with preshared secret keys is that both parties need to know the secret.
Consider a situation involving two applications. The same users participate in both
applications and want to use the same password for every application they use. Doing
so may be fine if both applications are written and operated by the same group, but
such an environment cannot be guaranteed in most instances. Where such a closed
environment is not possible, trust becomes an issue.

userPassword: my_password

userPassword: {crypt}Bf8YuicZ5nloP

Figure 13.5 Encrypted passwords are

prefixed by the algorithm used.

Application A

Application B

John User Directory uid: John
userPassword: list

Evil Programmer

Replay John's Login/Password

Data
Store

I am John and

my password is "list"

I am John and
my password is "list"

John/list

Success!

John/listSuccess!

Capture

Password

Figure 13.6 An evil developer of application B knows that he can replay passwords given

to his application to application A.
260 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

It is possible that the developer of one of the two applications may decide to cap-
ture passwords provided to users of that application and relay them to the second
application, gaining access via the captured accounts. Figure 13.6 shows this risk.

Although this risk has existed for some time, it has been amplified as directory envi-
ronments have become more integrated. Directories that are integrated beyond orga-
nizational boundaries, such as those directory environments used in extranets, are at
a higher degree of risk from these kinds of attacks. True authentication services, such
as Kerberos, can mitigate some of these risks, but they are often difficult to deploy
across organizational boundaries.

13.2.2 Public/private key pairs

Public key cryptography solves many of the problems that secret keys pose. Unlike
secret keys, public key cryptography removes the need to preshare any private infor-
mation used in the authentication process.

Instead, a user generates a pair of keys: one private, the other public. The private
key is secret; only the user should ever know what it is. The public key, on the other
hand, can and should be shared with the world.

Only the private key can decrypt infor-
mation the public key encrypts. Similarly,
only the public key can decrypt information
the private key encrypts. The latter instance
may seem odd, considering that anyone can
have access to the public key. However, if the
public key is guaranteed to have been gener-
ated by John User, you can also guarantee
that only John User has encrypted a piece of
data. As a result, you know with certainty
that it is in fact John User who is attempting
to access your application.

Figure 13.7 shows that even though John
is using the same private key as part of the
authentication process, the information that
goes over the wire and is received by the
application is useless in the type of replay
attack shown in the previous section.

Because it is theoretically possible for anyone to have the public key, it is now possible
for anyone to authenticate John User without divulging secret information.

Problems with key pairs

The problem with this scenario is that it is often difficult to guarantee that John User
really owns a particular public key. After all, if Evil Hacker forges an email to Sally
Jones using John User’s email address, he can tell Sally about his “new public key.”

Application A

Application B

John User

(Frustrated)
Evil Programmer

I am John and junk

encrypted w/private key

is ...

I am John and junk

encrypted w/private key
is ...

Junk

Captured

Figure 13.7 With public key cryptogra-

phy, an evil programmer cannot use infor-

mation sent to his application to access

another application.
STORING KEY AND CERTIFICATE DATA 261

Without proper verification, Sally will have the false sense that the information sent
by Evil Hacker is from John. In the next section, we look at how digital certificates
can solve this problem, particularly when used with a directory.

13.3 USING DIGITAL CERTIFICATES

Digital certificates attempt to solve part of the public key distribution problem men-
tioned in the previous section. Together with the rest of public key cryptography, dig-
ital certificates greatly enhance many of the security components we discussed at the
beginning of the chapter.

A digital certificate is basically a signed public key. By signed, we mean that some
entity has encrypted a public key with its private key. This signing process is a guar-
antee by a third party that the signed public key is valid.

Consider the scenario depicted in figure 13.8. Paul knows John. Additionally, Sally
knows Paul’s public key. Rather than John simply sending his public key to Sally, he
instead asks Paul to sign the key and generate a certificate. Now it is possible for John,
Paul, or anyone else to forward this certificate to Sally. Sally can verify that it has not
been changed because she trusts the validity of the signing key (Paul).

Although digital certificates solve much of the trust problem associated with using
public/private key pairs for authentication, they still involve a few issues:

• Certificates require wide distribution.

• Certificates need to be associated with identity information.

• Private keys may be compromised.

Directories can be used to help resolve or mitigate all of these issues.

John User

Sally Jones

Paul Smith
Paul knows John and

signs his public key

(Frustrated)
Evil Hacker
can not fake

John's Certificate

Sally trusts John's Certificate

signed by Paul

Sa
lly

 tr
us

ts
 P

au
l a

nd

kn
ow

s
hi

s
pu

bl
ic

 k
ey

Figure 13.8 Sally trusts Paul and knows his public key. She also trusts certifi-

cates signed by Paul, including John’s.
262 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

13.3.1 Creating a digital certificate in Java

In Java, a standard tool called keytool exists for creating public/private key pairs and
managing certificates. The following command generates a public/private key pair:

$ keytool -genkey -alias jdoe -keyalg rsa
 -dname "cn=John Doe,dc=manning,dc=com"
Enter keystore password: password
Enter key password for <jdoe>
 (RETURN if same as keystore password): password

That’s it. You now have a set of keys associated with jdoe. You can see them using
keytool’s list command:

$ keytool -list
Enter keystore password: password

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

jdoe, Fri Dec 07 07:34:23 CST 2001, keyEntry,
Certificate fingerprint (MD5):
46:1D:C8:96:95:C4:E1:B5:07:C8:48:4F:EA:7F:C6:62

However, you still don’t have a certificate. In order to generate a certificate, you need
to do one of two things: self-sign or submit for signing. Because much of the point
of having a certificate is to be able to share it and help people authenticate you, it
doesn’t help to self-sign unless everyone plans to trust you explicitly. The exception is
during testing.

Self-signing a certificate

To self-sign a certificate, use the selfcert argument to keytool, as follows:

$ keytool -selfcert -alias jdoe -keyalg rsa
 -dname "cn=John Doe,dc=manning,dc=com"
 -validity 365
Enter keystore password: password

Now notice that when you list the certificates, the fingerprint is different:

$ keytool -list
Enter keystore password: password

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

jdoe, Fri Dec 07 07:46:28 CST 2001, keyEntry,
Certificate fingerprint (MD5):
65:30:7E:43:EE:DD:19:91:33:91:F0:96:F5:1D:CD:10
USING DIGITAL CERTIFICATES 263

Submitting to a signing authority

If, instead of self-signing, you want to submit your key to a signing authority such as
Thawte or VeriSign, you can do the following:

$ keytool -certreq -alias jdoe -file jdoe.csr
Enter keystore password: password

You can now submit the file jdoe.csr to a signing authority (the CSR extension identi-
fies it as a certificate signing request). That authority will return a fully signed certifi-
cate. You store that certificate in a file called jdoe.cer, and import it into your Java
keystore using the following command:

$ keytool -import -alias jdoe -file jdoe.cer -v
Enter keystore password: password

As you can see, working with certificates using the Java command-line tools isn’t too
difficult. These certificates can, in turn, be used by the Java Cryptography Extensions
(JCE). With the few exceptions that we’ll discuss in a moment, JCE is out of the scope
of this book.

13.3.2 Storing and distributing digital certificates

Directories are a network storage point for digital certificates. Such a storage point offers
applications a place to easily find a digital certificate for communications partners.

With shared secret keys, the risk rises as keys are used by more applications. In con-
trast, distributing digital certificates adds immense value by allowing credentials to be
shared across administrative domains and even organizations without adding risk.
Because LDAP-based directories can be highly distributed, storing certificates in such
a directory lets you distribute certificates in a relatively standard way.

Digital certificates are commonly stored within LDAP servers in a format called
X.509v3. Such a certificate includes the name of the certificate’s owner, arbitrary key/
value assertions, the public key of the owner, and an expiration time (see figure 13.9).
Like LDAP, X.509v3 is defined using ASN.1, although it is encoded using a subset of
Basic Encoding Rules (BERs) called Distinguished Encoding Rules (DERs). This
encoding ensures that the same information is encoded identically each time, whereas
BER allows for multiple encodings, particularly related to value length representations.

Issuer Distinguished Name

Owner/Subject Distinguished Name
Owner/Subject Public Key

Extensions (Key/Value pairs)
Expiration Time

Figure 13.9

The contents of an X.509v3

digital certificate
264 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

The standard attribute type defined for storing certificates in an LDAP directory
service is called userCertificate. The attribute is always stored in its DER-
encoded, binary representation.

Let’s look at what it takes to store the certificate you generated in the last section
in the directory, rather than in Java’s local keystore. To do so, you can use the JCE
mentioned in the last section along with your existing knowledge of the JNDI.

Begin by exporting a certificate from your Java keystore—perhaps the jdoe certif-
icate you issued in the last section, although any DER-formatted certificate will do.
Place the exported certificate into a file called test.cer:

keytool -export -alias jdoe -file test.cer

Now that you have a certificate file, create the Java code in listing 13.2, which takes
the contents of this file and publishes it to an appropriate entry within the directory.
Note that it is possible with the JCE kit to read the certificate directly from the key-
store, but this code deals with the more common occurrence of processing externally
generated certificates. The output of your small program will look something like
the following:

Found Certificate -
 Issuer : CN=John Doe, DC=manning, DC=com
 Subject: CN=John Doe, DC=manning, DC=com
 Expires: Sat Dec 07 07:46:27 CST 2002
Storing Certificate in Directory.

import java.io.InputStream;
import java.io.FileInputStream;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;

import java.security.cert.CertificateEncodingException;
import java.util.Vector;

public class PublishCert {

 private static String certFile = "test.cer";

 public static void main(String[] args) {
 X509Certificate cert = null;
 try {
 InputStream inStream =
 new FileInputStream(certFile);
 CertificateFactory cf =
 CertificateFactory.getInstance("X.509");

 // Generate a certificate from the information
 // in the open file
 cert = (X509Certificate)cf
 .generateCertificate(inStream);

 inStream.close();

Listing 13.2 PublishCert.java

Create
certificate
from file
USING DIGITAL CERTIFICATES 265

 } catch (Exception e) {
 System.err.println("Failed to Read Certificate: " +
 e.getMessage());
 }

 System.out.println("Found Certificate -");
 System.out.println(" Issuer : " + cert.getIssuerDN());
 System.out.println(" Subject: " + cert.getSubjectDN());
 System.out.println(" Expires: " + cert.getNotAfter());

 System.out.println("Storing Certificate in Directory.");

 // Get the certificate in its DER-encoded form
 // as a string of bytes.
 byte[] certbytes = null;
 try {
 certbytes = cert.getEncoded();
 } catch (CertificateEncodingException cee) {
 System.err.println("Unable to encode certificate: " +
 cee.getMessage());
 }

 // Use our Entry class from chapter 11
 Entry entry = new Entry();

 entry.setDN("cn=John Doe,dc=manning,dc=com");

 // Add the certificate value to the entry's userCertificate
 // using the ;binary attribute tag
 Vector certvals = new Vector();
 certvals.addElement(certbytes);
 entry.put("userCertificate",certvals);

 // We'll use the same value for CN and SN attributes
 Vector cnsnvals = new Vector();
 cnsnvals.addElement("John Doe");
 entry.put("cn",cnsnvals);
 entry.put("sn",cnsnvals);

 Vector ocvals = new Vector();
 ocvals.addElement("inetOrgPerson");
 entry.put("objectclass",ocvals);

 // Call the LDAPAdd.add() method from chapter 11
 LDAPConnection lc =
 new LDAPConnection("cn=admin","manager");
 LDAPAdd.add(lc,entry);
 }

}

You can verify that the program added the certificate to the directory entry by using
the following ldapsearch command:

Set DN of
new entry
266 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

> ldapsearch -b "cn=Test User,dc=manning,dc=com" -s
 base objectclass=*

The returned entry in LDIF format looks something like this:

dn: cn=John Doe,dc=manning,dc=com
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
userCertificate:: MIIB+DCCAWECBDwQyDMwDQYJKoZIhvcNAQ...
sn: Doe
cn: John Doe

The userCertificate attribute can now easily be read using the search code you
developed in chapter 11. You can use it to create a certificate from the directory,
rather than from a file as you did in this example.

Associating certificates

with related directory information

A digital certificate, once issued, cannot be changed. This means the certificate is a
poor choice to store information about roles and other potentially dynamic infor-
mation. Instead, the directory can be used to map the distinguished name of the
certificate owner to additional information that can be used for authorization and
other services.

Revoking compromised certificates

Digital certificates have a fixed expiration time. However, in some cases, you’ll need
to cancel a digital certificate before its expiration time. Certificates can be revoked for
a number of reasons, such as the following:

• Someone was terminated or left a project where he or she is authorized to have a
certificate from a particular issuer.

• The holder of the certificate changed his or her legal name and requires a new
certificate to be issued with the new name.

• A private key has been compromised, in which case it must be revoked to pre-
vent unauthorized users from gaining access with compromised credentials.

The need to revoke certificates is a real issue, because there is no way to know how far
a particular certificate has propagated. Additionally, this need is not uncommon.
Consider the number of people who have left your organization in the last year. Now
add any cases in which a private key may have been compromised. Each of those situ-
ations would require that a certificate be expired prior to its noted expiration date.

You can resolve this problem a number of ways, including revocation lists and spe-
cial services that focus on providing certificate validity information. Certificate
authorities (the services that issue certificates) can create a CRL of certificate serial
USING DIGITAL CERTIFICATES 267

numbers that have prematurely expired for one reason or another. Once created, this
list is stored in a directory so that applications and validation services can verify the
certificate being used continues to be valid.

More recently, protocols such as Online Certificate Status Protocol (OCSP) have
played a more prominent role and have displaced direct lookup of CRLs in the direc-
tory. This change is the equivalent of merchants moving from using lists of bad or sto-
len credit card numbers to using real-time authorization systems when performing a
typical credit card validation. Some of these OCSP services still perform queries against
LDAP directories to locate expired certificates.

13.4 MANAGING AUTHORIZATION
INFORMATION

Although we have touched on the need for directories as a storage point for authori-
zation information, most of our focus has been on authentication. In this section, we
take a closer look at authorization on two levels: directory and application.

13.4.1 Understanding access control rules

At its most basic level, authorization is the process of answering the question, “Does
entity x have access to perform action y on resource z?” The answer to this question is
always yes or no, given enough context.

Servers and applications use access control rules to evaluate these authorization
questions. Rules usually take this form: “Set of entities x has access to perform set of
actions y on set of resources z when the following conditions are met.” The first three
criteria map closely to the elements in the authorization question, but the final ele-
ment is also important.

Take the following rule, for example: “Anyone who owns a record can update it.”
The people allowed to update a record are not fulfilling a global role of “owner.”
Instead, “owner” is a role that is associated with a particular resource.

Another example might say that “Managers can view salary information for any
people they manage.” This common situation also requires that someone fulfill a role
relative to the resource being changed. Just knowing that someone has the title “man-
ager” does not mean he or she can view anyone’s salary: he or she must be the manager
of the person whose information is being viewed.

If you’re familiar with basic Unix file permissions, you know that three basic roles
are associated with each file:

• Owner

• Group owner

• Other

By being assigned one of these roles relative to a particular file, you can be authorized
to read, write, and execute exactly the same way as others who might fulfill that role.
268 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

How these types of access control rules are evaluated depends on whether you are
protecting a data store (such as a directory) or an application.

13.4.2 Directory authorization

The need to protect information in the directory from being viewed or changed by
unauthorized individuals is a type of authorization necessary in virtually every direc-
tory services environment. Unfortunately, no current standard exists for setting access
control on information in an LDAP-enabled directory. There is also no current way
for applications to determine in advance whether a desired operation will be allowed
prior to an actual request.

Although no standard exists, most implementations provide some of the same
types of access controls. These access controls include the ability to restrict certain
parts of the directory tree to particular users and groups. Administrators can also
restrict the attributes that directory users can access or update, in some cases based on
their own relation to the entry being accessed or modified. For example, a user might
authenticate to the server as a manager and be given special rights to manage entries
in which the manager attribute is set to the authenticated user’s distinguished name.
Server documentation is the best source for server-specific access control information.

13.4.3 Application authorization

Applications use directory information for authorization as well as authentication.
This is an excellent way to reuse information about people, groups, and accounts
within the directory to enhance security. For example, if the directory entries about
people contain a flag that indicates whether a person is a contractor or permanent
employee, an application could allow or disallow access to parts of the application
based on that information.

Such access control would be done within the application at some point following
authentication by the user. With the distinguished name of the user known from the
authentication process, it is only necessary to read that user’s information to determine
whether they are authorized to perform a particular action. If the test is to determine
whether a user is a member of a group, you may need to search on the group to deter-
mine if the user is a member. Each of these options can be performed easily using the
search techniques explored in this chapter and chapter 11.

It has become very popular to not only use the directory as an external source of
authentication and authorization, but also to externalize considerable authentication
and authorization logic from the application by using access management products.
These products allow both user and policy information to be stored outside the appli-
cation, often in a directory service, so that this information can be reused across mul-
tiple applications. The idea is to reduce the amount of security-related programming
necessary in enterprise applications and portals.

Be aware that although these policies are often stored in a standards-based
repository, such as an LDAP-enabled directory, the content of the policies is often
MANAGING AUTHORIZATION INFORMATION 269

proprietary and usable only by a particular access management product. However,
user and group information that follows standard schemas is not proprietary and
usually reusable.

13.5 ENCRYPTING LDAP SESSIONS
USING JNDI AND SSL

Encryption is important to protect the privacy of the data being transmitted. For the
most part, SSL is the standard for encrypting data sessions over the Internet. Most
directories support LDAPS, which is basically LDAP encapsulated within an SSL ses-
sion. Using Sun’s Java Secure Socket Extension (JSSE) toolkit, JNDI allows an LDAP
server to connect securely over a network using SSL. Figure 13.10 shows how these
pieces fit together.

Wonderfully, you can do all this by simply changing a few lines of code when you cre-
ate the initial DirContext object. Make the change shown in bold in listing 13.3 to
the LDAPConnection class (from listing 11.1) to encrypt the sessions for all the
examples in part 3 that use the class to open connections. No other code changes are
necessary, because the fundamental LDAP operations are unchanged.

 public DirContext open() throws NamingException {
 Properties env = new Properties();
 env.put(DirContext.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put(DirContext.PROVIDER_URL,"ldap://" + host +
 ":" + port);
 if (dn != null) {
 env.put(DirContext.SECURITY_PRINCIPAL,dn);
 env.put(DirContext.SECURITY_CREDENTIALS,password);
 }

JNDI

LDAP Provider

JSSE
LDAPS-Enabled

Directory

User Application

LDAP over SSL

A
P

I C
all

Figure 13.10

The various layers that fit

together to enable LDAP

over SSL in Java include

JSSE and JNDI.

Listing 13.3 LDAPConnection.java
270 CHAPTER 13 APPLICATION SECURITY AND DIRECTORY SERVICES

 env.put(Context.SECURITY_PROTOCOL, "ssl");

 DirContext dirContext = new InitialDirContext(env);
 return dirContext;
 }

Note that all you have to do is add a line indicating that you want to use the ssl
security protocol, and JNDI takes care of the rest. All your directory operations will
now be private.

13.6 SUMMARY

In this chapter, you learned a considerable amount about application security and
how it relates to directories. We discussed authentication using LDAP as a service for
verifying passwords, and we presented an example that lets you validate a login and
password against a server. You also saw how you can use Java to create and publish
digital certificates. Finally, we explored how easy it is to enable SSL with Sun’s LDAP
provider for JNDI.
SUMMARY 271

A P P E N D I X A

Standard schema reference
This appendix offers a detailed summary of commonly used, industry-standard sche-
mas that have been defined by the IETF.

A.1 STANDARD OBJECT CLASSES

The object classes listed in this section are defined in three separate standards docu-
ments. Those defined in RFCs 2252 and 2256 are implemented by virtually every
directory vendor. Those defined in RFC 2798 are supported by nearly every vendor,
with Microsoft as a major exception.

alias

Some directories support entry aliases. The alias object class lets you create entries
that reference other entries within the directory.

Type Structural
Superior top

OID 2.5.6.1
Required aliasedObjectName

Defined RFC 2256
273

certificationAuthority

This object class defines information about a certificate authority. It may be used in
some PKI environments.

country

The country object class is relatively straightforward. It mandates a country
attribute. In older directories, a country entry is the first object below the root of
the directory.

cRLDistributionPoint

This object class defines a distribution point for CRLs in a PKI environment.

device

The device object class is a generic object class for representing devices, such as
modems and printers.

Type Auxiliary
Superior top

OID 2.5.6.16
Required authorityRevocationList, certificateRevocationList,

cACertificate

Allowed crossCertificatePair

Defined RFC 2256

Type Structural
Superior top

OID 2.5.6.2
Required c

Allowed searchGuide, description

Defined RFC 2256

Type Structural
Superior top

OID 2.5.6.19
Required cn

Allowed certificateRevocationList, authorityRevocationList,
deltaRevocationList

Defined RFC 2256

Type Structural
Superior top

OID 2.5.6.14
274 APPENDIX A STANDARD SCHEMA REFERENCE

dmd

The dmd object class defines a directory management domain. It is rarely used in
most LDAP implementations.

extensibleObject

The extensibleObject object class, if present in an entry, permits that entry to
optionally hold any attribute. It allows an entry to be constructed with arbitrary
attribute types and values. Not all directory servers support this class. In addition,
keep in mind that indexing issues may keep any arbitrary attributes from being
searchable in implementations that do support this class.

groupOfNames

This object class makes it possible to create groups that contain a set of people or
things. Typically, the member and owner attributes are populated with the distin-
guished names of other entries within the directory.

Required cn

Allowed serialNumber, seeAlso, owner, ou, o, l, description

Defined RFC 2256

Type Structural
Superior top

OID 2.5.6.20
Required dmdName

Allowed certificateRevocationList, authorityRevocationList,
deltaRevocationList

Defined RFC 2256

Type Auxiliary
Superior top

OID 1.3.6.1.4.1.1466.101.120.111
Defined RFC 2252

Type Structural
Superior top

OID 2.5.6.9
Required member, cn

Allowed businessCategory, seeAlso, owner, ou, o, description

Defined RFC 2256
STANDARD OBJECT CLASSES 275

groupOfUniqueNames

This object class is commonly used to reference a list of users or entries that belong to
a common group. These groups can then be used for everything from mailing lists to
access control.

inetOrgPerson

The inetOrgPerson represents people who are associated with an organization in
some way. It is a structural class derived from the organizationalPerson class.

locality

This object class typically defines a city, and in some cases a more specific location. It
is most useful when you’re adding a regional hierarchy to a directory tree.

organization

An organization is typically a company or other similar type of entity. Although you
can use this class to simply represent a list of organizations for lookup, its most com-
mon purpose is as a high-level naming component in the directory tree that allows
organization-style naming. The difference between organization-style and domain-
style naming is discussed in chapter 3.

Type Structural
Superior top

OID 2.5.6.17
Required uniqueMember, cn

Allowed businessCategory, seeAlso, owner, ou, o, description

Defined RFC 2256

Type Structural
Superior organizationalPerson

OID 2.16.840.1.113730.3.2.2
Allowed audio, businessCategory, carLicense, departmentNumber,

displayName, employeeNumber, employeeType, givenName,
homePhone, homePostalAddress, initials, jpegPhoto,
labeledURI, mail, manager, mobile, o, pager, photo,
roomNumber, secretary, uid, userCertificate,
x500uniqueIdentifier, preferredLanguage,
userSMIMECertificate, userPKCS12

Defined RFC 2798

Type Structural
Superior top

OID 2.5.6.3
Allowed street, seeAlso, searchGuide, st, l, description

Defined RFC 2256
276 APPENDIX A STANDARD SCHEMA REFERENCE

organizationalPerson

The organizationalPerson object class is a structural class that can be used to
hold information about people. In Active Directory, the person object class is
abstract, so person entries should be members of this class.

organizationalRole

Roles can be many things. For example, “accounts receivable clerk” and “customer
support technician” might be roles. Defining such roles lets you define policies
around them and add people to them, rather than policies being tied to individuals.

Type Structural
Superior top

OID 2.5.6.4
Required o

Allowed userPassword, searchGuide, seeAlso, businessCategory,
x121Address, registeredAddress, destinationIndicator,
preferredDeliveryMethod, telexNumber,
teletexTerminalIdentifier, telephoneNumber,
internationaliSDNNumber, facsimileTelephoneNumber, street,
postOfficeBox, postalCode, postalAddress,
physicalDeliveryOfficeName, st, l, description

Defined RFC 2256

Type Structural
Superior person

OID 2.5.6.7
Required sn, cn

Allowed userPassword, telephoneNumber, seeAlso, description

Defined RFC 2256

Type Structural
Superior top

OID 2.5.6.8
Required cn

Allowed x121Address, registeredAddress, destinationIndicator,
preferredDeliveryMethod, telexNumber,
teletexTerminalIdentifier, telephoneNumber,
internationaliSDNNumber, facsimileTelephoneNumber, seeAlso,
roleOccupant, preferredDeliveryMethod, street,
postOfficeBox, postalCode, postalAddress,
physicalDeliveryOfficeName, ou, st, l, description

Defined RFC 2256
STANDARD OBJECT CLASSES 277

organizationalUnit

This class typically represents a division or part of an organization. However, it is also
commonly used as a general-purpose class for nodes that divide the tree. For example,
in chapter 3, we show how you can use this class to divide a directory into people and
groups using organizationalUnit entries as containers.

person

This is the simplest class for representing a person in a directory. It doesn’t have many
associated attributes, but it is often the superclass from which other people-related
classes inherit. Most applications looking for people-like objects will look for entries
containing this object class.

residentialPerson

The residentialPerson object class can be used to represent people who are not
based in a particular organization. Generally, inetOrgPerson is a better alternative
and more commonly used to represent all types of people.

Type Structural
Superior top

OID 2.5.6.5
Required ou

Allowed userPassword, searchGuide, seeAlso, businessCategory,
x121Address, registeredAddress, destinationIndicator,
preferredDeliveryMethod, telexNumber,
teletexTerminalIdentifier, telephoneNumber,
internationaliSDNNumber, facsimileTelephoneNumber, street,
postOfficeBox, postalCode, postalAddress,
physicalDeliveryOfficeName, st, l, description

Defined RFC 2256

Type Structural
Superior top

OID 2.5.6.6
Required sn, cn

Allowed userPassword, telephoneNumber, seeAlso, description

Defined RFC 2256

Type Structural
Superior person

OID 2.5.6.10
278 APPENDIX A STANDARD SCHEMA REFERENCE

strongAuthenticationUser

The strongAuthenticationUser object class can be used to add supplemental
certificate information to entries that are also members of other classes.

subschema

This object class is used in the subschema entry. Subschema entries are used to hold
information about the server’s schema. The objectClasses and attribute-
Types attributes would allow you to see whether the schemas listed in this appendix
are supported on the server.

top

The top object class is the root of all other object classes. This class specifically states
that the objectClass attribute is required in all entries.

Allowed businessCategory, x121Address, registeredAddress,
destinationIndicator, preferredDeliveryMethod, telexNumber,
teletexTerminalIdentifier, telephoneNumber,
internationaliSDNNumber, facsimileTelephoneNumber, street,
postOfficeBox, postalCode, postalAddress,
physicalDeliveryOfficeName, st, l

Defined RFC 2256

Type Auxiliary
Superior top

OID 2.5.6.15
Required userCertificate

Defined RFC 2256

Type Auxiliary
OID 2.5.20.1
Allowed dITStructureRules, nameForms, ditContentRules, object-

Classes, attributeTypes, matchingRules, matchingRuleUse

Defined RFC 2252

Type Abstract
OID 2.5.6.0
Required objectClass

Defined RFC 2256
STANDARD OBJECT CLASSES 279

A.2 STANDARD ATTRIBUTE TYPES

This section details the attribute types defined by RFC 2252, RFC 2256, and the lat-
est inetOrgPerson draft.

aliasedObjectName

The aliasedObjectName attribute is used by the directory service if the entry
containing this attribute is an alias.

altServer

The values of this attribute are URLs of other servers that may be contacted when this
server becomes unavailable. If the server does not know of any other servers that can
be used, this attribute is absent. Clients can cache this information in case their pre-
ferred LDAP server later becomes unavailable.

attributeTypes

This attribute is typically located in the subschema entry.

OID 2.5.4.1
Syntax DN
Equality distinguishedNameMatch

Multivalued No
User modify Yes
Defined RFC 2256

OID 1.3.6.1.4.1.1466.101.120.6
Syntax IA5 String
Usage dSAOperation

Multivalued Yes
User modify Yes
Defined RFC 2252

OID 2.5.21.5
Syntax Attribute Type Description
Usage directoryOperation

Equality objectIdentifierFirstComponentMatch

Multivalued Yes
User modify Yes
Defined RFC 2252
280 APPENDIX A STANDARD SCHEMA REFERENCE

authorityRevocationList

This attribute must be stored and requested in the binary form, as authorityRe-
vocationList;binary.

businessCategory

This attribute describes the kind of business performed by an organization.

c

This attribute contains a two-letter ISO 3166 country code; for example, US or CA.

cACertificate

This attribute must be stored and requested in the binary form, as cACertifi-
cate;binary.

OID 2.5.4.38
Syntax Certificate List
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.15
Syntax Directory String{128}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

Superior name

OID 2.5.4.6
Multivalued No
User modify Yes
Defined RFC 2256

OID 2.5.4.37
Syntax Certificate
Multivalued Yes
User modify Yes
Defined RFC 2256
STANDARD ATTRIBUTE TYPES 281

carLicense

This multivalued field is used to record the values of the license or registration plate
associated with an individual.

certificateRevocationList

This attribute must be stored and requested in the binary form, as certificate-
RevocationList;binary.

cn

This is the X.500 commonName attribute, which contains a name of an object. If the
object corresponds to a person, it is typically the person’s full name.

createTimestamp

This attribute should automatically appear in entries created on the directory server.
It is an operational attribute maintained by the server.

OID 2.16.840.1.113730.3.1.1
Syntax Directory String
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2798

OID 2.5.4.39
Syntax Certificate List
Multivalued Yes
User modify Yes
Defined RFC 2256

Superior name

OID 2.5.4.3
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.18.1
Syntax Generalized Time
Usage directoryOperation

Equality generalizedTimeMatch

Multivalued No
User modify No
Defined RFC 2252
282 APPENDIX A STANDARD SCHEMA REFERENCE

creatorsName

This attribute should appear in entries created on the directory server. It is an opera-
tional attribute maintained by the server.

crossCertificatePair

This attribute must be stored and requested in the binary form, as crossCertifi-
catePair;binary.

dITContentRules

This attribute is used in some X.500-based implementations to define the content of
the directory information tree. It is not generally useful outside that context.

dITStructureRules

This attribute is used in some X.500-based implementations to define the content of
the directory information tree. It is not used by most pure LDAP directories.

OID 2.5.18.3
Syntax DN
Usage directoryOperation

Equality distinguishedNameMatch

Multivalued No
User modify No
Defined RFC 2252

OID 2.5.4.40
Syntax Certificate Pair
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.21.2
Syntax DIT Content Rule Description
Usage directoryOperation

Equality objectIdentifierFirstComponentMatch

Multivalued Yes
User modify Yes
Defined RFC 2252

OID 2.5.21.1
Syntax DIT Structure Rule Description
Usage directoryOperation

Equality integerFirstComponentMatch

Multivalued Yes
STANDARD ATTRIBUTE TYPES 283

deltaRevocationList

This attribute must be stored and requested in the binary form, as deltaRevoca-
tionList;binary.

departmentNumber

This attribute contains a code for the department to which a person belongs. It can
also be strictly numeric (such as 1234) or alphanumeric (such as ABC123).

description

This attribute contains a human-readable description of the object.

destinationIndicator

This attribute is used for the telegram service.

User modify Yes
Defined RFC 2252

OID 2.5.4.53
Syntax Certificate List
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.16.840.1.113730.3.1.2
Syntax Directory String
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2798

OID 2.5.4.13
Syntax Directory String{1024}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.27
Syntax Printable String{128}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch
284 APPENDIX A STANDARD SCHEMA REFERENCE

displayName

When you’re displaying an entry, especially within a one-line summary list, it is useful
to be able to identify a name to be used. Because other attribute types such as cn are
multivalued, an additional attribute type is needed. The displayName attribute is
defined for this purpose.

distinguishedName

This attribute type is not used as the name of the object itself, but is instead a base
type from which attributes with DN syntax inherit. It is unlikely that values of this
type will occur in an entry.

dmdName

The value of this attribute specifies a directory management domain (DMD), the
administrative authority that operates the directory server.

dnQualifier

The dnQualifier attribute type specifies disambiguating information to add to
the relative distinguished name of an entry. It is intended for use when you’re merg-

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.16.840.1.113730.3.1.241
Syntax Directory String
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued No
User modify Yes
Defined RFC 2798

OID 2.5.4.49
Syntax DN
Equality distinguishedNameMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

Superior name

OID 2.5.4.54
Multivalued Yes
User modify Yes
Defined RFC 2256
STANDARD ATTRIBUTE TYPES 285

ing data from multiple sources, in order to prevent conflicts between entries that
would otherwise have the same name. It is recommended that the value of the
dnQualifier attribute be the same for all entries from a particular source.

employeeNumber

This single-valued attribute is a numeric or alphanumeric identifier assigned to a per-
son, typically based on the order of hire or association with an organization.

employeeType

This attribute is used to identify the employer-to-employee relationship. Typical val-
ues are Contractor, Employee, Intern, Temp, External, and Unknown, but
any value may be used.

enhancedSearchGuide

This attribute is for use by X.500 clients in constructing search filters.

OID 2.5.4.46
Syntax Printable String
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.16.840.1.113730.3.1.3
Syntax Directory String
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued No
User modify Yes
Defined RFC 2798

OID 2.16.840.1.113730.3.1.4
Syntax Directory String
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2798

OID 2.5.4.47
Syntax Enhanced Guide
Multivalued Yes
286 APPENDIX A STANDARD SCHEMA REFERENCE

facsimileTelephoneNumber

This attribute represents a fax number.

generationQualifier

The generationQualifier attribute contains the part of the name that typically
is the suffix, such as Jr. or III.

givenName

The givenName attribute is used to hold the part of a person’s name that is neither
their surname nor middle name.

houseIdentifier

This attribute is used to identify a building within a location.

User modify Yes
Defined RFC 2256

OID 2.5.4.23
Syntax Facsimile Telephone Number
Multivalued Yes
User modify Yes
Defined RFC 2256

Superior name

OID 2.5.4.44
Multivalued Yes
User modify Yes
Defined RFC 2256

Superior name

OID 2.5.4.42
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.51
Syntax Directory String{32768}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256
STANDARD ATTRIBUTE TYPES 287

initials

The initials attribute contains the initials of some or all of an individual’s names,
but not the surname(s).

internationalISDNNumber

This attribute stores the ISDN telephone number for the entry with which it is
associated.

jpegPhoto

This attribute is used to store one or more images of a person using the JPEG File
Interchange Format (JFIF).

l

This attribute contains the name of a locality, such as a city, county, or other geo-
graphic region (localityName).

Superior name

OID 2.5.4.43
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.25
Syntax Numeric String{16}
Equality numericStringMatch

Substring numericStringSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 0.9.2342.19200300.100.1.60
Syntax JPEG
Multivalued Yes
User modify Yes
Defined RFC 2798

Superior name

OID 2.5.4.7
Multivalued Yes
User modify Yes
Defined RFC 2256
288 APPENDIX A STANDARD SCHEMA REFERENCE

ldapSyntaxes

Servers may use this attribute to list the syntaxes that are implemented. Each value
corresponds to one syntax.

matchingRules

This attribute is typically located in the subschema entry.

matchingRuleUse

This attribute is typically located in the subschema entry.

member

This attribute is used to represent a member of a group or group-like entry. It is
designed to contain a distinguished name.

OID 1.3.6.1.4.1.1466.101.120.16
Syntax LDAP Syntax Description
Usage directoryOperation

Equality objectIdentifierFirstComponentMatch

Multivalued Yes
User modify Yes
Defined RFC 2252

OID 2.5.21.4
Syntax Matching Rule Description
Usage directoryOperation

Equality objectIdentifierFirstComponentMatch

Multivalued Yes
User modify Yes
Defined RFC 2252

OID 2.5.21.8
Syntax Matching Rule Use Description
Usage directoryOperation

Equality objectIdentifierFirstComponentMatch

Multivalued Yes
User modify Yes
Defined RFC 2252

Superior distinguishedName

OID 2.5.4.31
Multivalued Yes
User modify Yes
Defined RFC 2256
STANDARD ATTRIBUTE TYPES 289

modifiersName

This attribute should appear in entries that have been modified using the Modify
operation. It is automatically updated by the directory server if the server supports
the operational use of this attribute.

modifyTimestamp

This attribute should appear in entries that have been modified using the Modify
operation. If the server supports this operational attribute, it will maintain the value
automatically when an entry is updated.

name

The name attribute type is the attribute supertype from which string attribute types
typically used for naming may be formed. It is unlikely that values of this type will
occur in an entry.

OID 2.5.18.4
Syntax DN
Usage directoryOperation

Equality distinguishedNameMatch

Multivalued No
User modify No
Defined RFC 2252

OID 2.5.18.2
Syntax Generalized Time
Usage directoryOperation

Equality generalizedTimeMatch

Multivalued No
User modify No
Defined RFC 2252

OID 2.5.4.41
Syntax Directory String{32768}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256
290 APPENDIX A STANDARD SCHEMA REFERENCE

nameForms

This attribute is used by some X.500 servers as a way to define the content of the DIT.

namingContexts

The values of this attribute correspond to naming contexts that this server masters or
shadows. If the server does not master any information (for example, if it is an LDAP
gateway to a public X.500 directory), this attribute will be absent. If the server believes
it contains the entire directory, the attribute will have a single value, and that value will
be the empty string (indicating the null DN of the root). This attribute allows a client
to choose suitable base objects for searching when it has contacted a server.

o

This attribute contains the name of an organization (organizationName).

objectClass

The values of the objectClass attribute describe the kind of object that an entry
represents. The objectClass attribute is present in every entry, with at least two
values. One of the values is either top or alias.

OID 2.5.21.7
Syntax Name Form Description
Usage directoryOperation

Equality objectIdentifierFirstComponentMatch

Multivalued Yes
User modify Yes
Defined RFC 2252

OID 1.3.6.1.4.1.1466.101.120.5
Syntax DN
Usage dSAOperation

Multivalued Yes
User modify Yes
Defined RFC 2252

Superior name

OID 2.5.4.10
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.0
Syntax OID
Equality objectIdentifierMatch
STANDARD ATTRIBUTE TYPES 291

objectClasses

This attribute is typically located in the subschema entry.

ou

This attribute contains the name of an organizational unit (organization-
alUnitName).

owner

This attribute is normally used to define the distinguished name of the owner of an
entry. For example, a groupOfUniqueEntries entry contains a list of mem-
bers, but it also may list an owner that is allowed to make changes to the group
using this attribute.

physicalDeliveryOfficeName

This attribute contains a free-form name for a particular office to which a person may
be assigned.

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.21.6
Syntax Object Class Description
Usage directoryOperation

Equality objectIdentifierFirstComponentMatch

Multivalued Yes
User modify Yes
Defined RFC 2252

Superior name

OID 2.5.4.11
Multivalued Yes
User modify Yes
Defined RFC 2256

Superior distinguishedName

OID 2.5.4.32
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.19
Syntax Directory String{128}
Equality caseIgnoreMatch
292 APPENDIX A STANDARD SCHEMA REFERENCE

postalAddress

This attribute generally contains the full postal address (for example, 101 North
Maple Street) minus city, state, and postal/ZIP code.

postalCode

This attribute contains a postal or ZIP code.

postOfficeBox

This attribute can contain a post office box number or similar information.

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.16
Syntax Postal Address
Equality caseIgnoreListMatch

Substring caseIgnoreListSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.17
Syntax Directory String{40}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.18
Syntax Directory String{40}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256
STANDARD ATTRIBUTE TYPES 293

preferredDeliveryMethod

This attribute may specify whether a person prefers email, postal mail, FedEx, or
some other delivery method. It is generally a free-form value, which limits its gen-
eral usefulness.

preferredLanguage

This attribute is used to indicate an individual’s preferred written or spoken language.
It is useful for international correspondence or human-computer interaction. Values
for this attribute type must conform to the definition of the Accept-Language
header field defined in RFC 2068, with one exception: the sequence Accept-
Language: should be omitted. This is a single-valued attribute type.

presentationAddress

This attribute contains an OSI presentation address.

protocolInformation

This attribute is used in conjunction with the presentationAddress attribute
to provide additional information to the OSI network service.

OID 2.5.4.28
Syntax Delivery Method
Multivalued No
User modify Yes
Defined RFC 2256

OID 2.16.840.1.113730.3.1.39
Syntax Directory String
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued No
User modify Yes
Defined RFC 2798

OID 2.5.4.29
Syntax Presentation Address
Equality presentationAddressMatch

Multivalued No
User modify Yes
Defined RFC 2256

OID 2.5.4.48
Syntax 1.3.6.1.4.1.1466.115.121.1.42
Equality protocolInformationMatch
294 APPENDIX A STANDARD SCHEMA REFERENCE

registeredAddress

This attribute holds a postal address suitable for reception of telegrams or expedited
documents, where it is necessary to have the recipient accept delivery.

roleOccupant

An organizationalRole entry is associated with people who fill that role. This
attribute is used to contain the distinguished names of those role-fillers.

searchGuide

This attribute is used by X.500 clients when constructing search filters. It is made
obsolete by enhancedSearchGuide.

seeAlso

This attribute can be used to point to the distinguished name of a related entry.

Multivalued Yes
User modify Yes
Defined RFC 2256

Superior postalAddress

OID 2.5.4.26
Syntax Postal Address
Multivalued Yes
User modify Yes
Defined RFC 2256

Superior distinguishedName

OID 2.5.4.33
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.14
Syntax 1.3.6.1.4.1.1466.115.121.1.25
Multivalued Yes
User modify Yes
Defined RFC 2256

Superior distinguishedName

OID 2.5.4.34
Multivalued Yes
User modify Yes
Defined RFC 2256
STANDARD ATTRIBUTE TYPES 295

serialNumber

This attribute contains the serial number of a device.

sn

This is the X.500 surname attribute, which contains a person’s family name.

st

This attribute contains the full name of a state or province (stateOrProvince-
Name).

street

This attribute contains the physical address of the object to which the entry corre-
sponds, such as an address for package delivery (streetAddress).

OID 2.5.4.5
Syntax Printable String{64}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

Superior name

OID 2.5.4.4
Multivalued Yes
User modify Yes
Defined RFC 2256

Superior name

OID 2.5.4.8
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.9
Syntax Directory String{128}
Equality caseIgnoreMatch

Substring caseIgnoreSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256
296 APPENDIX A STANDARD SCHEMA REFERENCE

subschemaSubentry

The value of this attribute is the name of a subschema entry (or subentry if the
server is based on X.500(93)) in which the server makes available attributes specify-
ing the schema.

supportedAlgorithms

This attribute must be stored and requested in the binary form, as supported-
Algorithms;binary.

supportedApplicationContext

This attribute contains the identifiers of OSI application contexts.

supportedControl

The values of this attribute are the OIDs identifying controls the server supports. If
the server does not support any controls, this attribute is absent.

OID 2.5.18.10
Syntax DN
Usage directoryOperation

Equality distinguishedNameMatch

Multivalued No
User modify No
Defined RFC 2252

OID 2.5.4.52
Syntax Supported Algorithm
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.30
Syntax OID
Equality objectIdentifierMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 1.3.6.1.4.1.1466.101.120.13
Syntax OID
Usage dSAOperation

Multivalued Yes
User modify Yes
Defined RFC 2252
STANDARD ATTRIBUTE TYPES 297

supportedExtension

The values of this attribute are OIDs identifying the extended operations that the
server supports. If the server does not support any extensions, this attribute is absent.

supportedLDAPVersion

The values of this attribute are the versions of the LDAP protocol that the server
implements.

supportedSASLMechanisms

The values of this attribute are the names of supported SASL mechanisms that the
server supports. If the server does not support any mechanisms, this attribute is absent.

telephoneNumber

This attribute contains the telephone number associated with a particular entry.

OID 1.3.6.1.4.1.1466.101.120.7
Syntax OID
Usage dSAOperation

Multivalued Yes
User modify Yes
Defined RFC 2252

OID 1.3.6.1.4.1.1466.101.120.15
Syntax Integer
Usage dSAOperation

Multivalued Yes
User modify Yes

Defined RFC 2252

OID 1.3.6.1.4.1.1466.101.120.14
Syntax Directory String
Usage dSAOperation

Multivalued Yes
User modify Yes
Defined RFC 2252

OID 2.5.4.20
Syntax Telephone Number{32}
Equality telephoneNumberMatch

Substring telephoneNumberSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256
298 APPENDIX A STANDARD SCHEMA REFERENCE

teletexTerminalIdentifier

Teletex was a type of terminal that could be used to send and receive text and graph-
ics. As with Teletex, this attribute is rarely used anymore.

telexNumber

Used to store the number for a Teletex terminal. This attribute is almost never used.

title

This attribute contains the title, such as Vice President, of a person in their
organizational context. The personalTitle attribute is used for a person’s title
independent of their job function.

uniqueMember

This attribute is typically used to store the distinguished name of a group member. It
may be used to store other unique membership information, but doing so probably
will not make the membership information easily reusable; so, distinguished names
are preferred.

OID 2.5.4.22
Syntax Teletex Terminal Identifier
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.21
Syntax Telex Number
Multivalued Yes
User modify Yes
Defined RFC 2256

Superior name

OID 2.5.4.12
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.50
Syntax Name And Optional UID
Equality uniqueMemberMatch

Multivalued Yes
User modify Yes
Defined RFC 2256
STANDARD ATTRIBUTE TYPES 299

userCertificate

This attribute must be stored and requested in the binary form, as userCertifi-
cate;binary.

userPassword

This attribute is used to store passwords. Many directory implementations assume
plain-text passwords unless the password value is prefixed by the mechanisms used to
hide it.

userPKCS12

PKCS #12 provides a format for exchange of personal identity information. When
such information is stored in a directory service, the userPKCS12 attribute should
be used. This attribute must be stored and requested in binary form, as
userPKCS12;binary.

userSMIMECertificate

This attribute is an S/MIME (RFC 1847) signed message with a zero-length body. It
must be stored and requested in binary form, as userSMIMECertifi-
cate;binary. It contains the person’s entire certificate chain and the signed attribute
that describes his or her algorithm capabilities, stored as binary data. This attribute is
preferred over the userCertificate attribute for S/MIME applications.

OID 2.5.4.36
Syntax Certificate
Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.35
Syntax Octet String{128}
Equality octetStringMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.16.840.1.113730.3.1.216
Syntax Binary
Multivalued Yes
User modify Yes
Defined RFC 2798

OID 2.16.840.1.113730.3.1.40
Syntax Binary
300 APPENDIX A STANDARD SCHEMA REFERENCE

x121Address

X.121 is an addressing scheme used in X.25. This attribute can be used to store such
an address.

x500UniqueIdentifier

The x500uniqueIdentifier attribute is used to distinguish between objects
when a distinguished name has been reused. This is a different attribute type from
both the uid and uniqueIdentifier types.

Multivalued Yes
User modify Yes
Defined RFC 2798

OID 2.5.4.24
Syntax Numeric String{15}
Equality numericStringMatch

Substring numericStringSubstringsMatch

Multivalued Yes
User modify Yes
Defined RFC 2256

OID 2.5.4.45
Syntax Bit String
Equality bitStringMatch

Multivalued Yes
User modify Yes
Defined RFC 2256
STANDARD ATTRIBUTE TYPES 301

A P P E N D I X B

PerLDAP
In part 2, we discussed a number of examples using the Net::LDAP module for Perl.
However, many existing tools and scripts are written using PerLDAP, a module devel-
oped in 1998 by Netscape and the author of this book. This appendix gives a brief
overview of PerLDAP and translates many of the key examples from part 2 from
Net::LDAP to PerLDAP.

B.1 OVERVIEW OF PERLDAP

When discussing the differences between Net::LDAP and PerLDAP in chapter 6, we
showed a diagram of PerLDAP’s architecture with several components. In this section,
we’ll briefly review these components and the role they play.

B.1.1 The Conn class

The connection class, Mozilla::LDAP::Conn, manages the connection between
the LDAP client and server. Every time you want to perform an LDAP operation, you
use this class. These LDAP operations include bind, search, compare, add, delete,
modify, and rename—all of which can be performed using the connection class.

B.1.2 The Entry class

The Entry class, Mozilla::LDAP::Entry, represents a single LDAP entry. It
generally acts like a smart, named Perl hash. The Entry class is smart in the sense
that it remembers all the changes that have been performed upon it since the last time
it was retrieved from the LDAP server. By named, we mean that it is assigned a distin-
guished name corresponding to an entry in the directory.
302

B.1.3 LDAP messages

Certain tasks are commonly performed by applications accessing LDAP directories.
The utilities class, Mozilla::LDAP::Utils, makes some of these tasks much eas-
ier. Among the tasks this component simplifies is the parsing of command-line argu-
ments in a way that conforms with the de facto standard ldapsearch and
ldapmodify command-line applications. Other simplified tasks include distin-
guished name manipulation.

B.1.4 LDIF

Because most existing LDAP-enabled applications and servers can use LDIF,
PerLDAP’s ability to create and parse files in this format is a real timesaver. This func-
tionality is provided by the Mozilla::LDAP::LDIF component.

B.2 EXAMPLES FROM CHAPTER 7:
ENTRY MANAGEMENT

Our first example mirrors the adduser.pl example from listing 7.1. It allows for the
creation of new users with a web form. In listing B.1, the bolded lines indicate
changes from the version in chapter 7 to allow the use of PerLDAP rather than
Net::LDAP. Notice the use of $ld->getErrorString() to print an error mes-
sage as opposed to the error handling provided by Net::LDAP.

use CGI qw/:standard/;
use Mozilla::LDAP::Conn;

my $server = "localhost";
my $port = 389;
my $user = "cn=Administrator";
my $pass = "password";
my $org = "dc=domain,dc=com";

print header,
 start_html('Add User'),
 h1('Add User'),
 start_form,
 "First Name:",textfield('givenname'),p,
 "Last Name:",textfield('sn'),p,
 "UserID:",textfield('uid'),p,
 "Mail:",textfield('mail'),p,
 submit("Add"),end_form,hr;

if (param()) {
 my $ld = new Mozilla::LDAP::Conn($server,$port,$user,$pass);

 my $givenname = param('givenname');
 my $sn = param('sn');
 my $uid = param('uid');
 my $mail = param('mail');

Listing B.1 Adduser.pl
EXAMPLES FROM CHAPTER 7: ENTRY MANAGEMENT 303

 my $cn = "$givenname $sn";
 my $dn = "uid=$uid,$org";
 my $objectclass = "inetOrgPerson";

 print "Adding User: ",$dn,p;

 my $entry = new Mozilla::LDAP::Entry();

 $entry->setDN($dn);

 $entry->addValue("objectclass",$objectclass);

 $entry->addValue("givenname",$givenname);

 $entry->addValue("sn",$sn);

 $entry->addValue("uid",$uid);

 $entry->addValue("mail",$mail);

 $entry->addValue("cn",$cn);

 if (!$ld->add($entry)) {

 print "Failed: ",$ld->getErrorString();

 exit;
 }
 print "Okay!",p;
}

Our second example from chapter 7 (listing 7.2) provides a way to add a minimal
amount of information using a web page and have that information be joined with
other external information to create a full entry in the directory. The version of that
example in listing B.2 uses the same web-handling techniques, but uses PerLDAP
rather than Net::LDAP for directory access. Notice that when the entry is created, you
set the objectclass using a standard Perl array reference.

use CGI qw/:standard/;
use Mozilla::LDAP::Conn;

my $server = "localhost";
my $port = 389;
my $user = "cn=Admin";
my $pass = "manager_password";
my $org = "dc=domain,dc=com";
my $maildomain = "domain.com";

print header,
 start_html('Sync User'),
 h1('Sync User'),
 start_form,
 "UserID: ",textfield('uid'),p,
 "Password: ",password_field('password'),p,
 submit("Sync"),end_form,hr;

if (param()) {
 my $ld = new Mozilla::LDAP::Conn($server,$port,$user,$pass);

Listing B.2 addimportuser.pl
304 APPENDIX B PERLDAP

 my $uid = param('uid');
 my $password = param('password');

 my ($login,$pass,$userid,$groupid,$quota,
 $comment,$gecos,$home,$shell,$expire) = getpwnam($uid);

 if (!$login || crypt($password,$pass) ne $pass) {
 print "Invalid Username or Password.",p;
 print "Crypt: $pass",p;

 exit;
 }
 $gecos =~ /(\w+)$/;
 my $sn = $1;
 my $dn = "uid=$uid,$org";
 my $entry = new Mozilla::LDAP::Entry();
 $entry->setDN($dn);

 $entry->{objectclass} = ["top", "person", "inetOrgPerson"];

 $entry->addValue("cn",$gecos);

 $entry->addValue("sn",$sn);

 $entry->addValue("userPassword","{crypt}$pass");

 $entry->addValue("uid",$uid);

 $entry->addValue("mail","$uid\@$maildomain");

 print "Adding $dn.",p;
 if (!$ld->add($entry)) {
 print "Failed: ",$ld->getErrorString();

 exit;
 }
 print "Okay!";
 exit;
}

In our final example in chapter 7 (listing 7.3), we offer a command-line tool that cre-
ates standard posixAccount entries in the directory that will be compliant with the
various pluggable authentication modules (PAM) available for many Unix platforms.
The version in listing B.3 changes the connection handling to use PerLDAP, but oth-
erwise provides the same functionality.

use Mozilla::LDAP::Conn;

$conn = new Mozilla::LDAP::Conn("localhost",389,"cn=Admin",

 "password");

print "Username: ";
$username = <>;

print "Password: ";
$password = <>;

print "UID#: ";
$uid = <>;

Listing B.3 account_add.pl
EXAMPLES FROM CHAPTER 7: ENTRY MANAGEMENT 305

print "GID#: ";
$gid = <>;

print "Full Name: ";
$gecos = <>;

print "Home Directory: ";
$home = <>;

print "Shell: ";
$shell = <>;

$entry = $conn->newEntry();

$entry->addValue("uid",$username);

$entry->addValue("uidNumber",$uid);

$entry->addValue("gidNumber",$gid);

$entry->addValue("gecos",$gecos);

$entry->addValue("homeDirectory",$home);

$entry->addValue("loginShell",$shell);

$entry->addValue("userPassword",$password);

$entry->addValue("objectclass","posixAccount");

$entry->copy("uid","cn");

$dn = "cn=" . $username .
 ", ou=Division A, ou=Accounts, dc=domain, dc=com";
$entry->setDN($dn);

if (!$conn->add(entry)) {

 print "An error occurred adding the account to the directory.\n";
 die $conn->getErrorString();

}
print "Account added successfully!\n";

B.3 EXAMPLES FROM CHAPTER 8:
MIGRATION AND SYNCHRONIZATION

The first example in chapter 8 provides a way to migrate a comma-separated table
into an LDAP directory. The version in listing B.4 mirrors listing 8.1, but changes the
initial connection creation and subsequent entry creation to use the PerLDAP mod-
ule. Note that although most of the entry creation is similar to Net::LDAP, the multi-
valued objectclass attribute is populated using a traditional Perl tied hash rather
than the addValue method. Either technique works.

use Mozilla::LDAP::Conn;

use Mozilla::LDAP::Entry;

$conn = new Mozilla::LDAP::Conn("myserver",389,"cn=Admin",

 "admin-password");

while ($line = <>)

Listing B.4 migrate_table.pl
306 APPENDIX B PERLDAP

{
 chop $line; # remove the trailing linefeed
 ($last,$first,$telephone,$email) = split(/,/,$line);
 ($username,$domain) = split(/@/,$email);
 $dn = "uid=" . $username . ",dc=xyz,dc=com";
 $entry = new Mozilla::LDAP::Entry();

 $entry->setDN($dn);

 $entry->addValue("sn",$last);

 $entry->addValue("cn","$first $last");

 $entry->addValue("givenName",$first);

 $entry->addValue("uid",$username);

 $entry->addValue("mail",$email);

 $entry->addValue("telephoneNumber",$telephone);

 $entry->{objectclass} = ["top","inetOrgPerson"];

 $conn->add($entry);

}

In our second example from chapter 8, we migrate two tables from two different files
into the directory. The structure of the code in listing B.5 is the same, but this exam-
ple swaps out listing 8.2’s Net::LDAP calls for PerLDAP calls.

use Mozilla::LDAP::Conn;

use Mozilla::LDAP::Entry;

$conn = new Mozilla::LDAP::Conn("myserver",389,"cn=Admin",

 "admin-password");

open(EMAILDB,"email.txt");
while ($line = <EMAILDB>)
{
 chop $line; # remove the trailing linefeed
 ($last,$first,$telephone,$email) = split(/,/,$line);
 ($username,$domain) = split(/@/,$email);
 $dn = "uid=" . $username . ",dc=xyz,dc=com";
 $entry = new Mozilla::LDAP::Entry();
 $entry->setDN($dn);

 $entry->addValue("sn",$last);

 $entry->addValue("cn","$first $last");

 $entry->addValue("givenName",$first);

 $entry->addValue("uid",$username);

 $entry->addValue("mail",$email);

 $entry->addValue("telephoneNumber",$telephone);

 $entry->{objectclass} = ["top","inetOrgPerson"];

 $entries{$username} = $entry;
}
close (EMAILDB);

open(PASSDB,"password.txt");
while ($line = <PASSDB>) {

Listing B.5 migrate_two.pl
EXAMPLES FROM CHAPTER 8: MIGRATION AND SYNCHRONIZATION 307

 chop $line;
 ($uid,$password,$name) = split(/,/,$line);
 $entry = $entries{$uid};
 $entry->addValue("userPassword",$password);

 $conn->add($entry);

}
close(PASSDB);

Listing 8.3 provides a way to synchronize a user’s password from a file. Listing B.6
does the same, but it uses PerLDAP instead of Net::LDAP. Notice the use of the
update method on the connection class rather than an update method on the
entry itself.

use Mozilla::LDAP::Conn;

$conn = new Mozilla::LDAP::Conn("myserver",389,"cn=Admin",

 "admin-password");

open (MYFILE,"inputfile");
while ($line = <MYFILE>)
{
 chop $line; # remove tailing linefeed
 ($userid,$name,$company,$password) = split(/,/,$line);
 $entry = $conn->search("dc=xyz,dc=com","sub","(uid=$userid)");

 if (!$entry)

 {
 print "Warning: Entry '$userid' was not found.\n";
 } else {
 $entry->replaceValue("userPassword",$password);

 $conn->update($entry);

 print "Updated Password for Entry '$userid'.\n";
 }
}
close (MYFILE);

In listing 8.4, we provide a way to use multiple criteria to try to identify the entry to
update. Listing B.7 does the same thing, but it substitutes the PerLDAP connection han-
dling, searching, and update techniques for the Net::LDAP routines used in chapter 8.

use Mozilla::LDAP::Conn;

use Mozilla::LDAP::Entry;

$conn = new Mozilla::LDAP::Conn("localhost",389,"cn=Admin",

 "admin-password") or die "Can not create LDAP connection.";

while($line = <>)

Listing B.6 update_password.pl

Listing B.7 fuzzy_update.pl
308 APPENDIX B PERLDAP

{
 chop $line;
 ($last,$first,$phone,$department) = split(/,/,$line);
 $entry = $conn->search("dc=xyz,dc=com","sub",

 "(&(department=$department)(cn=$first $last))");

if (!$entry) {

 $entry = new Mozilla::LDAP::Entry();

 $entry->setDN("cn=$first $last,dc=xyz,dc=com");

 $entry->addValue("objectClass","organizationalPerson");

 $entry->addValue("cn","$first $last");

 $entry->addValue("sn",$last);

 $entry->addValue("telephoneNumber",$phone);

 $entry->addValue("department",$department);

 $conn->add($entry);

} else {

 $entry->replaceValue("telephoneNumber",$phone);

 $conn->update($entry);

}

In the final example from chapter 8 (listing 8.5), we provide a way to synchronize
from LDAP to a file based on time stamps. Listing B.8 shows a slightly simpler ver-
sion of that example—it doesn’t do the time stamp generation. Notice that because
you are dealing with multiple entries from LDAP, you use the nextEntry()
method to advance to the next entry.

use Mozilla::LDAP::Conn;

$conn = new Mozilla::LDAP::Conn("localhost",389,"cn=Admin",

 "admin-password") or die "Unable to open a connection.";

$lastrun = "199908150000";
$entry = $conn->search("dc=xyz,dc=com","sub",

 "modifyTimestamp>=$lastrun");

while ($entry)

{
 $cn = $entry->getValue("cn");

 ($first,$last) = split(/ /,$cn);

 $phone = $entry->getValue("telephoneNumber");

 $email = $entry->getValue("mail");

 $row{$email} = "$last,$first,$phone,$email";

 $entry = $entry->nextEntry();

}

while ($line = <>)
{
 chop $line;
 ($last,$first,$phone,$email) = split(/,/,$line);
 if ($row{$email})

Listing B.8 sync_from_ldap.pl
EXAMPLES FROM CHAPTER 8: MIGRATION AND SYNCHRONIZATION 309

 {
 print $row{$email} . "\n";
 } else {
 print $line . "\n";
 }
}

B.4 EXAMPLES FROM CHAPTER 9:
SERVER MANAGEMENT AND MONITORING

Listing 9.1 shows how to retrieve the root entry from an LDAPv3-compliant directory
server. The version of the example in listing B.9 uses the LDIF printing capability of
the PerLDAP Entry class to print the contents of the root entry.

use Mozilla::LDAP::Conn;

$conn = new Mozilla::LDAP::Conn("localhost", "389");

die "No LDAP connection" unless $conn;

$entry = $conn->search("", "base", "(objectclass=*)");

if ($entry)

{

 $entry->printLDIF();

}

$conn->close;

print_oclass_def.pl

The example in listing B.10 parallels listing 9.2, which shows how to extract informa-
tion about object classes directly from an LDAP server. Most of the regular-expression
code remains the same, but the initial code to retrieve the schema information is
changed to use PerLDAP classes.

use Mozilla::LDAP::Conn;

my $conn = new Mozilla::LDAP::Conn("127.0.0.1",389,

 "cn=Admin","manager");

die "Unable to connect to LDAP server" unless $conn;

my $entry = $conn->search("cn=schema","base","(objectclass=*)");

if (! $entry)

{
 print "Sorry, this server doesn't support schema discovery.\n";
 exit;

Listing B.9 get_root.pl

Listing B.10 print_oclass_def.pl
310 APPENDIX B PERLDAP

}

my @objectclasses = @{$entry->{objectclasses}};

foreach my $oc (@objectclasses)

{
 my ($name, $desc, $sup, $must, $may, @must, @may, $match);

 if ($oc =~ /NAME '(.+)' DESC '(.*)'/)

 {
 $name = $1;
 if ($2 =~ /\w+/)
 {
 $desc = $2;
 }
 }

 if (grep (/^$name$/i,@ARGV))
 {
 $match = 1;

 if ($oc =~ /SUP (\w+)/)
 {
 $sup = $1;
 }

 if ($oc =~ /MUST [\(']+([$ \w]+)[\)']+/ || $oc =~
 /MUST (\w+)/)
 {
 $must = $1;
 $must =~ s/ //g;
 @must = split(/\$/,$must);
 }

 if ($oc =~ /MAY [\(']+([$ \w]+)[\)']+/ || $oc =~
 /MAY (\w+)/)
 {
 $may = $1;
 $may =~ s/ //g;
 @may = split(/\$/,$may);
 }
 }

 print "Name:\t$name\n" if ($match || $#ARGV < 0);
 print "Desc:\t$desc\n" if $desc;
 print "Sup:\t$sup\n" if $sup;
 print "Must:\t" . join("\n\t",@must) . "\n" if @must;
 print "May:\t" . join("\n\t",@may) . "\n" if @may;
 print "\n" if ($match);
}

$conn->close;
EXAMPLES FROM CHAPTER 9: SERVER MANAGEMENT AND MONITORING 311

Listing 9.3 is similar to 9.2 from a directory access perspective, so we will not provide
a PerLDAP version. To create a PerLDAP version of the example, simply perform
almost the same substitutions as in listing B.10.

The get_monitor.pl example in listing 9.4 is also easy to translate by substituting
the connection and search methods, as we’ve done in many of the previous examples.
Listing B.11 shows that example with the appropriate substitutions.

use Mozilla::LDAP::Conn;

my $conn = new Mozilla::LDAP::Conn("localhost",389);

my $entry = $conn->search("","base","objectclass=*");

my $monitordn;

if (!$entry) {

 $monitordn = "cn=monitor";
} else {
 $monitordn = $entry->{"monitor"}[0];

}
my $monitor_entry = $conn->search($monitordn,"base",

 "objectclass=*");

print "Connections: " . $monitor_entry->{"connections"} . "\n";

if ($monitor_entry->{"connections"}[0] > 100) {

 print "Warning: More than 100 concurrent connections.\n";
}

The final listing from chapter 9 (listing 9.5) offers a way to automatically test replica-
tion. Listing B.12 shows how you can write the same code using the PerLDAP module.

use Mozilla::LDAP::Conn;

use Mozilla::LDAP::Entry;

@replicas = ("server-a","server-b","server-c");

$master = "masterhostname";

$conn = new Mozilla::LDAP::Conn($master_name,389,"cn=Admin",

 "password");

$testentry_name = "cn=Test Entry, ou=Test Branch, dc=domain,

 dc=com";

$master->delete($testentry_name);

$testentry = new Mozilla::LDAP::Entry();

$testentry->setDn($testentry_name);

$testentry->addValue("objectclass","inetOrgPerson");

Listing B.11 Get_monitor.pl

Listing B.12 test_replication.pl
312 APPENDIX B PERLDAP

$testentry->addValue("cn","Test Entry");

$testentry->addValue("sn","Entry");

$conn->add($testentry);

sleep 10;

for ($i = 1; $i <= $#replicas; $i++) {
 $replica_name = $replicas[$i];

 $replica = new Mozilla::LDAP::Conn($replica_name);

 $entry = $replica->search($testentry_name,"base",

 "(objectclass=*)");

 if (!$entry) {
 print "$replica_name FAILED!\n";
 } else {
 print "$replica_name PASSED!\n";
 }
 $replica->unbind();

}

$conn->delete($testentry_name);

$conn->unbind();

B.5 PERLDAP-ONLY FUNCTIONALITY

Some functionality in PerLDAP is not available or not necessary in Net::LDAP. This sec-
tion discusses some of this functionality and how to use it from the PerLDAP module.

B.5.1 Rebinding to another server

When you’re following referrals, it is highly likely that the credentials that work for
one server are not valid on another server. For that reason, in order for LDAP opera-
tions to automatically follow referrals, you need to create a callback that can tell the
server what credentials to use when it needs to rebind to another server.

The setRebindProc() method on the Conn object takes a subroutine refer-
ence that can be used to return the proper information to authenticate successfully.
Here is a simple subroutine that can act as a callback, and the call to setRebind-
Proc() that activates it:

sub rebindsub
{
 return ("cn=Jeff Smith,dc=manning,dc=com","password",
 LDAP_AUTH_SIMPLE);
}

$conn->setRebindProc(\&rebindsub);

Rather than all this code, you can use the following method on the Conn object to
accomplish the same result:
PERLDAP-ONLY FUNCTIONALITY 313

$conn->setDefaultRebindProc("cn=someone","password",
 LDAP_AUTH_SIMPLE);

The trick with rebinding is that it is possible for a server to refer the client to a server
where the credentials currently being used are not valid. This is not usually the case
when referral takes place to direct a client at a writable copy of an entry to be modified.

B.5.2 Adding and removing values with DN syntax

The addDNValue() method of the Entry class simplifies the addition of values to
an attribute that has a DN syntax. For example, the uniqueMember attribute of a
groupOfUniqueNames entry is defined to hold DN values of group members:

$entry->addDNValue("uniqueMember","cn=Jody Adams,dc=domain,dc=com");

By using the addDNValue() method, the uniqueMember attribute will first be
checked to ensure that the value doesn’t already exist. This is the same process used
by the addValue() method, but it takes into account that the spacing between
RDN components is irrelevant, and other DN construction rules.

A similar method, removeDNValue(), removes a DN-syntax value from a par-
ticular attribute:

$entry->removeDNValue("uniqueMember",
 "cn=Jody Adams,dc=domain,dc=com");

B.5.3 Copying and moving attributes

Directory-enabled applications do not always agree on the attribute type to use for a
particular kind of value. One application may use postalAddress, and another
may used registeredAddress. If the goal is to keep both attributes synchro-
nized, you can do so by simply copying one attribute into another. The copy()
method on the Entry class does this:

$entry->copy("postalAddress","registeredAddress");

This line copies the contents of the postalAddress attribute into the regis-
teredAddress attribute. However, it will fail if registeredAddress already
exists in the entry. You can add an additional flag to tell the copy() method to over-
write the destination attribute:

$entry->copy("postalAddress","registeredAddress",1);

You can use a zero (0) in the third argument to get the default behavior.
If you only want the values to exist in the destination attribute, call the move()

method. This method takes the same arguments as the copy() method, but deletes
the source attribute:

$entry->move("postalAddress","registeredAddress",1);
314 APPENDIX B PERLDAP

In this line, you place the current value or values of postalAddress into reg-
isteredAddress, while at the same time deleting those values from postal-
Address.

B.5.4 Forcing a change

If you’re familiar with Perl, you may wonder why you don’t simply use the push and
pop commands available in the Perl language to operate directly on the array refer-
ences used to store values in the Entry objects. Unfortunately, these methods do not
allow you to track changes to the Entry object. Because you only submit changes,
not the entire entry, to the LDAP server when update is called, this change tracking
is very important.

If an array is updated directly, perhaps by some existing code that is unfamiliar with
PerLDAP, the attrModified() method can be called to tell PerLDAP to force a
change on the specified attribute:

$vals = $entry->{"mail"};
push @$vals, "someone\@domain.com";
$entry->attrModified("mail");

In this example, you retrieve the array reference for the mail attribute and push an
additional value into the array. Because PerLDAP will not detect this change, you
need to tell it that the change has occurred by calling attrModified().
PERLDAP-ONLY FUNCTIONALITY 315

index
A

abstract
object class type 48

access control
standardization 19

access control lists
and operational attributes 87

access control rules 58
general concepts 268

access controls
proprietary functionality

available 269
access management

products 269
account information

in LDAP 136
object class issues 137

accounts
association with people 122
joining 159
linking to people 141
vs. people 136

Active Directory xx
Alternative Name Lookup

(ANL) 157
auxiliary class support 50
multivalued attributes as

RDNs 61–62
naming limitations 62
renaming entries 231
renaming nonleaf nodes 62

restrictions on root naming
context 65

support for
inetOrgPerson 38

support for syntaxes 41
Active State Perl

getting required module xxi
add change type

in LDIF 94
add()

method in Net::LDAP 117
method in

Net::LDAP::Entry 130
adding new entries

in Net::LDAP 117
administration

scaling 124
administrative user

need to authenticate 134
alias object class 273
aliasedObjectName

attribute 280
altServer attribute 280
ambiguity

and searching 81
American National Standards In-

stitute (ANSI) 40
AND (&) operator 84
anonymous

access using Net::LDAP 110
Apache AXIS 250

ASN.1 264
asynchronous operations

and Net::LDAP 109
attribute

ability to have multiple
names 176

attribute retrieval
limiting in Net 115

attribute return list 87
attribute syntax

impact on search 80
attribute types 36

converting to DSML 204
defining 39
inheritance 44
listing details from server 174
multiple values for 43
naming 39
representing in DSML 101
representing in LDIF 95
user modification of 45

attribute values 36
unordered nature of 43

Attributes
of XML element 187

attributes 36
adding multiple values in

JNDI 228
LDAP vs. XML 99
limiting return in

Net::LDAP 113
limiting return in search 87
317

attributes (continued)
object class 47, 51
representing in DSML 99
required vs. optional in

DSML definition 101
returning without values in

Net::LDAP 116
updating in Net::LDAP 116
writing in DSML 202

attributetypes
special server attribute 176

attributeTypes attribute 280
audit trails 23
authentication 254

applications using LDAP 257
defined 12
use of exact searching 81
using Net 110

authoritative source 147
finding in a complex

environment 148
handling in bidirectional

synchronization 167
authorityRevocationList

attribute 281
authorization 254

directory-based in
applications 269

in the directory 269
auxiliary

object class type 49
availability 254

B

base
using scope in Perl 183

base scope
to retrieve server

information 170
using in Net::LDAP 113

Base64 151
and binary values in LDIF 92
encoding binary values

with 93
encoding values in DSML 100

handling with
Net::LDAP 112

Basic Encoding Rules 264
BasicAttribute

JNDI class 226, 228
bidirectional

synchronization 166
Binary

syntax defined 40
binary values

handling in JNDI 225
and LDIF 92

bind()
in Net::LDAP 110

binding
with Net::LDAP 110
requirements for directory

modification 116
role in authentication 257

businessCategory attribute 281

C

c attribute 281
cACertificate attribute 281
card catalog information

managing in LDAP 143
carLicense attribute 282
caseIgnoreOrderingMatch 42
centralized administration 122
certificate

syntax defined 40
certificate authorities 65
certificate revocation list 15
certificateRevocationList

attribute 282
certificates

storage using LDAP 259
use with Net::LDAP 120

certificationAuthority object
class 274

CGI
Perl module 127

change log keeping to aid
synchronization 162

change time stamps
and operational attributes 87

changetype
LDIF flag 94

character() 188
close() method

on DirContext class 218
cn attribute 282
cn=monitor

special entry 178
command-line tools

getting xx
Common Information Model

(CIM) 21–22, 56
common name

deriving 129
compare operation 118

drawbacks when checking
passwords 260

compare()
method in Net::LDAP 118

concurrent connections
finding on server 179

connections
issues with reusing 220
pooling for performance 89

country object class 274
create a user 130
createSubcontext()

method on DirContext 227
createTimestamp attribute 282

in DSML 208
creatorsName attribute 283
credentials

switching on open connection
with Net::LDAP 110

cRLDistributionPoint object
class 274

crossCertificatePair
attribute 283

crypt-style passwords 133
CSV

database interchange
format 91
318 INDEX

D

database records
comparison to LDAP

entries 36
databases

mapping to LDAP
namespace 149

migrating to LDAP 152
delegated administration 124

relation to directory tree
design 67

deleted entries
handling in

synchronization 166
in Net::LDAP 117
non-leaf entries 117
with children 230

deltaRevocationList
attribute 284

departmentNumber
attribute 284

description attribute 284
destinationIndicator

attribute 284
destroySubcontext()

method of DirContext 231
device object class 274
digital certificate 65, 262

associating with directory
information 267

defined 14
distributing with

directories 264
expiration 267
exporting and publishing to

directory 265
issues requiring

directories 262
revocation 267
self-signing in Java 263
signing 262
submitting to certificate au-

thority for signing 264
writing in LDIF 93

DirContext 217
initializing with SSL 270
using to manipulate

entries 229
Directory

management 32
servers 4
services 4
String syntax 40

directory 4
Directory Access Protocol 15
Directory Enabled Networking

(DEN) 21, 38
management of LDAP

information 143
directory entries

representing as DSML 99
writing as DSML 196

directory information tree
(DIT) 57
See also directory tree

directory operations
in DSMLv2 100

directory schemas
defining with DSML 100

Directory Services Markup Lan-
guage. See DSML

directory tree
and accounts 140
considerations for

synchronization 150
design 65
divided for self-

management 126
flat vs. hierarchical 66

directory tree design
extranets 71
flat 67
geographic 68
handling external users 69
handling groups of external

people 70
handling partners 72
internal and external

users 72–73

Internet 69
intranets 66
organization-based 66
partner segmentation 72–73
segmenting application

data 70
Directory-enabled

applications 32
displayName attribute 285
Distinguished Encoding

Rules 264
distinguished name 36

as bind argument 110
base 59, 62
constructing in

migration 153
defined 59
finding with search 118
generating 63
limitation on searching 80
representation in LDIF 92
returned in search 87
and search results 87
use in application

authorization 269
distinguishedName

attribute 285
distributed administration 124

and LDAP namespace 125
distributed management 68
Distributed Management Task

Force (DMTF)
standard schema 38

dITContentRules attribute 283
dITStructureRules attribute 283
dmd object class 275
dmdName attribute 285
dnQualifier attribute 285
DNS

administrative model 126
managing information in

LDAP 142
naming compared to

LDAP 58
document checking

limitation with PerlSAX 190
INDEX 319

Document Object Model 186,
196, 237
strengths 238

Domain Name Service
administrative model 125

Domain Name Service. See DNS
DSML 91, 151

binary attributes 99
comparison to LDIF 96
converting to HTML 102
generating 196
generating automatically in

Java 236
introduced 96
introduction 22
representing directory

schema 100
representing entry changes

in 100
transmitting over SOAP 249
use with general-purpose

tools 97
using with JNDI 235
version 2 enhancements 91
writing attribute types 101
writing in Java 234
writing object classes 100

DSML JNDI provider 237
dsml:addRequest

DSMLv2 element 249
dsml:attr

DSML element 198
dsml:attribute-type

DSML schema element 207
dsml:class

DSML element 203
dsml:description

DSML element 203
dsml:directory-entries 99
dsml:directory-schema

DSML element 201
dsml:dsml-entries

DSML tag 198
dsml:entry

DSML element 198

dsml:name
DSML schema element 203

dsml:objectclass
DSML element 198

dsml:object-identifier
DSML schema element 203

dsml:oc-value
DSML element 194, 198

dsml:single-value
DSML schema element 208

dsml:user-modification
DSML schema element 208

dsml:value
DSML element 194
DSML tag 198

DSMLEntry
example Java class 234

DSMLHandler
using 194
XML handler class 192

DSMLSOAPAdd
DSMLv2 request 250

DSMLv2
creating requests in

JNDI 252
enhancements since

DSMLv1 248
operations 248
provider 252
SOAP requests 249
standards 98

dynamic groups 136
creating with LDAP

URL 136
dynamic objects

storage in LDAP 9

E

elements
in DSML 99

email
attributes required to

route 115
email address

as unique key 159

email delivery 15
email relaying

use of LDAP filters 81
employeeNumber attribute 286
employeeType attribute 286

using to maintain account
status 166

encryption 119
encryption algorithm

determining 260
end_element() 188, 193
enhancedSearchGuide

attribute 286
entries 35, 47, 54

adding in JNDI 226
adding new in

Net::LDAP 117
comparing in

Net::LDAP 118
creating 62
deleting in Net::LDAP 117
names 57
renaming in Net::LDAP 117

Entry
example JNDI class 222

entry changes 92
entry names

whitespace 62
EQUALITY

attribute type definition
keyword 177

error checking
handling in Net::LDAP 119
in XML with PerlSAX 189

existing information
using to populate

directory 134
explicit groups 135
Extensible Markup Language. See

XML
extensible searching 86
Extensible Stylesheet Language

Transformations. See XSLT
extensibleObject object

class 275
320 INDEX

extranet
fit with distributed

administration 124
importance of distributed

administration 23
problems with central

administration 123

F

facsimileTelephoneNumber
attribute 287

federation 30
file system

why not use LDAP 7
filter

relation to scope and base 79
fuzzy matching 160

G

generationQualifier
attribute 287

getID()
method on Attributes

class 225
givenName attribute 287
graphical applications

and one-level scope 78
groupOfNames object class 275
groupOfUniqueNames object

class 135, 276
groupOfURLs

dynamic group object
class 136

groups
creating and maintaining 134

H

handlers
creating for PerlSAX 186

hasMore()
method on

NamingEnumeration 221
houseIdentifier attribute 287
HTML 102

converting DSML into 208

I

IBM LDAP provider for
JNDI 217

identity reuse 12
indexing

importance in tuning
servers 88

to boost performance 89
inetOrgPerson object

class 38, 276
information model 35
inheritance

generalization 44, 53
modelling in UML 53
object class 47
specialization 44, 47, 53

initial substring search 82
INITIAL_CONTEXT_

FACTORY 217
initials attribute 288
integerOrderingMatch 42
integrity 254
internationalISDNNumber

attribute 288
Internet

and importance of self-
service 125

Internet Engineering Task
Force 38, 145
and the LDIF standard 92
standard for posix account

storage 137
intranets

administration 125

J

Java
comparing attribute types to

variables 45
comparing classes to

LDAP 50
Java Cryptography

Extensions 264
Java Naming and Directory In-

terface. See JNDI

Java Secure Socket
Extension 270

Java servlet
example displaying DSML as

HTML 245
JNDI xxi, 216

and DSMLv2 252
architecture 216
basic example 11
benefits 216
binding to the directory 218
and certificate storage 265
closing a connection 218
operations 217
providers 217
searching with 220
using with DSML 235

join
metadirectory

functionality 28
joining information

using multiple keys 159
without an exact key 160

jpegPhoto attribute 288

K

Kerberos 261
keytool

standard Java tool 263

L

l attribute 288
LDAP

and security 256
as authentication

service 256–257
encrypting session in

Java 270
use in storing digital

certificates 264
LDAP Data Interchange Format.

See LDIF
LDAP entries

creating in Perl 129
generating in DSML 198
INDEX 321

LDAP Java SDK
comparison to JNDI 216

LDAP URLs 136
generating DSML output

from 236
LDAPConnection

example class 220
ldapmodify

adding LDIF entries with 93
getting xx

LDAPS 270
ldapsearch

getting xx
performing an equality

search 80
ldapsearch command

examples 79
greater-than-or-equal-to filter

example 83
substring filter examples 82

ldapSyntaxes attribute 289
LDAPv3

emergence of 18
LDIF 91, 150

advantages and
disadvantages 96

attribute representation 92
binary attribute values 93
converting from DSML 194
example 79
line wrapping 93
multiple changes 94
printing from

Net::LDAP 112
representing changes 94
storing schemas 95
with PerLDAP 303

Lightweight Directory Access
Protocol. See LDAP

Lightweight Directory Update
Protocol 145

linking accounts
to people 141

locality object class 276
logging in

to LDAP with username 110

M

management applications
impact of design on 73–74

matching rules 41
equality matching 42
greater or less than

matching 42
relevance to searching 83
retrieving from server 176
subschema matching 43
substring matching 43
using in search 86

matchingRules attribute 289
matchingRuleUse attribute 289
MAY

object class keyword 173
member attribute 289
metadirectories 27, 145
Microsoft Windows NT

retrieving account
information 133

migration 152
combining data 157
to existing directory 157
from multiple sources 154
selecting an RDN 154

moddn()
in Net::LDAP 118

ModificationItem
JNDI class 230

modifiersName attribute 290
modify change type

in LDIF 94
modifyTimestamp

attribute 163, 290
monitor distinguished name

retrieving from server 178
monitor entry

content example 178
polling 180

Mozilla xx
Mozilla::LDAP::Conn 302
Mozilla::LDAP::Entry 302
Mozilla::LDAP::LDIF 303
Mozilla::LDAP::Utils 303

multimaster replication 69
and bidirectional

synchronization 167
multiple inheritance 48
multivalued attributes

representation in LDIF 92
MUST

object class keyword 173

N

Name
of XML element 187

name attribute 290
nameForms attribute 291
namespace 56

difference from XML
namespace 56

hierarchical and flat 57
namespace translation

when doing
synchronization 149

namingContext
attribute type 170, 291

NamingEnumeration 221
NamingException

on context initialization 218
Net::LDAP

adding entries from
DSML 196

compared to PerLDAP 108
initializing 109
opening a connection 109
retrieving server information

with 169
Net::LDAP::Entry 115

change recording 116
creating from

DSML 190, 194
Net::LDAP::LDIF 153
Netscape 17
Netscape Java SDK xxi
Network Information

Service 6, 137
and JNDI 216

NOT (!) operator 86
322 INDEX

NO-USER-MODIFICATION
in schema definition 207

Novell
history in directories 6

O

o attribute 291
object classes 46

defining 46
inheritance 47
listing information from

server 170
naming 46
representing in DSML 100
standard 38
types 48
writing as DSML 199
writing in LDIF 95

Object IDentifiers 39
for object classes 47

object modeling
classes 51
instances 53
of LDAP schema 51
relationships 51

objectClass attribute 36, 46,
49, 291
using to match any entry 77

objectclasses 46
retrieving in Perl 172
special schema attribute 95

OID 39
one-level scope

using in Net::LDAP 114
Online Certificate Status

Protocol 268
Open Database Connectivity

(ODBC)
performance vs. LDAP 7

opening a connection
in Perl 175

OpenLDAP xx
operational attributes 87
OR (|) operator 85
ordering matches 83

Organization for the Advance-
ment of Structured Informa-
tion Standards (OASIS) 98

organization object class 38, 276
organizational boundaries

crossing with DSML 196
organizationalPerson object

class 38, 277
organizationalRole object

class 277
organizationalUnit object

class 278
ou attribute 292
owner

attribute 292
group attribute type 135

P

parentheses
use in search filters 79
when combining search

filters 85
parse()

method on PerlSAX 189
parser

instantiating 195
parser handler

for XML in Perl 186
passwd file 133

See also Unix passwd file
passwords

comparing 119
handling over the

network 119
initializing via migration 157

people entries
creating 126

performance
for different filter types 81
increasing for searches 88
read vs. write 9
substring searches 83

Perl
comparing attribute types to

variables 45

Perl modules
getting xx

Perl XS
and PerLDAP 108

PerLDAP 108, 302
adding and removing DN

values 314
copying and moving

attributes 314
forcing changes 315

Perl-LDAP module
getting xx

PerlSAX 186
automatic error checking 189
instantiating parser 189

person object class 38, 278
definition 199

personalization 14
physicalDeliveryOfficeName

attribute 292
policy information

management in LDAP 142
polling the monitor entry 180
posixAccount

object class 138
postalAddress attribute 293
postalCode attribute 293
postOfficeBox attribute 293
pre-existing data

using to populate
directory 126

preferredDeliveryMethod
attribute 294

preferredLanguage attribute 294
presentationAddress

attribute 294
printLDIF()

method on Net 195
privacy 27, 254
private key 261
protocolInformation

attribute 294
provisioning tools 125
public key cryptography

256, 261
INDEX 323

Public Key Infrastructure
(PKI) 14

public keys
issues with validation 261

R

RDBMS
comparison to 7
differences from LDAP

model 88
RDN 59
reading a specific entry 77
rebinding

using PerLDAP 313
reference bind 110
referential integrity

lack of and implication on
design 67

referrals
automatic handling in

Net::LDAP 116
registeredAddress attribute 295
regular expressions

alternatives when parsing
XML 186

and substring filters 82
using to parse RFC-style

schema 201
using to parse schema 172

relational database. See RDBMS
relational integrity 118, 232

and groups 135
relative distinguished name

changing in Net 118
defined 59
generating 61
meaning of 60
multivalued attributes in 61
selecting 60
using multiple attributes

in 61
why common names

shouldn't be used 60
remote procedure calls

with DSMLv2 248

renaming
difficulty with must LDAP

servers 117
renaming an entry

in Net::LDAP 117
with JNDI 231

replication 145
LDUP 20
relevance to directory tree

design 69
standardization 19
testing 181

reporting languages
LDAP’s lack of 9

residentialPerson object
class 278

Revoking compromised
certificates 267

RFC 2252, standard schema
definition 199

roaming profiles 14
roleOccupant attribute 295
Root Directory Server Entry 76
root entry

using to find monitor
entry 178

root naming context
Active Directory

restrictions 65
defined 64
listing via LDAP 169
traditional X.500 style 64
using domain

components 65

S

SASL. See Simple Authentication
and Security Layer

SAX. See Simple API for XML
scalability

of management 58
schema 37

and LDIF 92
converting to DSML from

RFC-style 199

importance in information
sharing 142

in DSML with SAX and
Java 238

standard 37
using in DSML 237

schema changes
using LDIF 95

schema discovery
detecting server

capability 175
retrieving from server 170

schema mapping 147
schema storage

in LDIF 95
search base 76
search criteria

defined 76
selecting attributes to

return 87
search filters

approximate 84
defined 78
exact equality 80
extensible 86
greater-than or equal to 83
less-than or equal to 83
negating 86
ordered matching 83
presence 79
substring 81
using multiple 84

search results
handling in Net::LDAP 115

search scope 77
base 77
handling in JNDI 225
one-level 77
subtree 78

search()
in Net::LDAP 111
method on DirContext 221

SearchControls
JNDI class 221

searchGuide attribute 295
324 INDEX

searching
with Net::LDAP 111

secret keys 259
problems with 260

Secure Sockets Layer 119, 257
security

and self-service 126
centralized user

administration 123
defined 254
using groups to facilitate 135
in relation to directory

tree 58
relationship to

directories 254
risk assessment 255

SECURITY_CREDENTIALS
219

SECURITY_PRINCIPAL 219
seeAlso attribute 295
self-administration 125
self-service 125
serialNumber attribute 296
server

configuration xx
vendors xix

server information
retrieving via LDAP 169

setSearchScope()
on SearchControls class 221

Simple API for XML 185–186
invoking in Perl 194
using to read schemas 238

simple authentication 257
Simple Authentication and

Security Layer (SASL) 20,
119, 257

Simple Object Access
Protocol 249
request printing contents 252

single sign-on
and LDAP management 142

SINGLE-VALUE
in schema definition 207

sn attribute 296

Soundex
and approximate

matching 84
spreadsheets

migrating to LDAP 152
SQL JOIN

lack of similar concept in
LDAP 88

SQL queries
in relation to LDAP

searches 87
SQL SELECT 88
st attribute 296
start_element() 187, 193
street attribute 296
strongAuthenticationUser object

class 279
structural

object class type 49, 202
stylesheets

and DSML 102
subschema object class 279
subschemaSubentry

attribute 297
subtree scope

using in Net::LDAP 114
subtrees, renaming 117
Sun LDAP provider for

JNDI 217
Sun One

relational integrity 135
supportedAlgorithms

attribute 297
supportedApplicationContext

attribute 297
supportedControl attribute 297
supportedExtension

attribute 298
supportedLDAPVersion

attribute 298
supportedSASLMechanisms

attribute 298
synchronization 26

and authoritative sources 147
detecting deletions 162

from LDAP 163
handling namespace

differences 149
to LDAP 162
using file import/export 146
using scripting 146

SYNTAX
attribute type definition

keyword 177
syntax 51

of attribute types 40
bounds 41
getting supported list from

server 176
synthetic transaction, creating to

test replication 181

T

telephoneNumber
attribute 298
attribute type definition 199
defined in DSML 101
syntax defined 40

teletexTerminalIdentifier
attribute 299

telexNumber attribute 299
time stamp

LDAP standard 164
when testing replication 183

title attribute 299
top object class 279

definition in DSML 204
transformation, planning 148
trust, and secret keys 260

U

UML
aggregations 52
associations and LDAP 51
composition associations 52
inheritance 53
multiplicity 52

Unified Modeling Language.
See UML
INDEX 325

uniqueMember attribute 135,
299

Universal Resource
Locators 136

Universal Time Coordinate 164
Unix passwd file

LDAP objectclass
equivalent 138

user credentials
storage in LDAP 259

userCertificate attribute 265,
300

userPassword
alternative to comparing 257
attribute 300

userPKCS12 attribute 300
userSMIMECertificate

attribute 300

V

virtual directories 30, 145

W

web services 96
relation to DSMLv2 100

white pages
defined 10
use of search filters 81
using DSML and XSLT 102

WHOIS 6
wildcard matching

and substring filters 82
write_entry(), method on

Net::LDAP::LDIF 153

X

X.500 5, 56
history 15
standard schemas based

on 38
X.509v3 264
x121Address attribute 301

x500UniqueIdentifier
attribute 301

XML
attributes 189
and directory data

interchange 91
storing directory information

in 22
storing in LDAP 8
stylesheets 245

XML::Parser
perl module 186

XML::XSLT
Perl module 210

XML4J
ability to check syntax 190

XSL Transformations. See XSLT
XSLT 97

and DSML in Java 244
transforming DSML 102
using in Perl 208
326 INDEX

	contents
	preface
	Who am I, and what’s my motivation?
	Lessons learned, and this book’s focus
	Access is access
	Configuration is trivial; management is complex

	acknowledgments
	about this book
	Who should read this book
	author online
	Source code
	Code conventions

	getting started
	Directory servers
	Directory server vendors
	Basic configuration parameters

	Command-line tools
	LDAP Perl modules
	Java
	Java LDAP Access
	DSML/XML

	about the cover illustration
	Fundamental LDAP concepts
	Introduction to LDAP
	1.1 What LDAP is
	1.1.1 Directory services and directory servers
	1.1.2 LDAP and directory services
	1.1.3 Other directory services

	1.2 What LDAP is not
	1.2.1 LDAP is not a relational database
	1.2.2 LDAP is not a file system for very large objects
	1.2.3 LDAP is not optimal for very dynamic objects
	1.2.4 LDAP is not useful without applications

	1.3 Current applications
	1.3.1 White pages
	1.3.2 Authentication and authorization
	1.3.3 Personalization
	1.3.4 Roaming profiles
	1.3.5 Public Key Infrastructure
	1.3.6 Message delivery

	1.4 Brief history
	1.4.1 X.500 and DAP
	1.4.2 A new standard is born
	1.4.3 LDAP goes solo
	1.4.4 LDAPv3

	1.5 LDAP revisions and other standards
	1.5.1 Replication and access control
	1.5.2 Directory Enabled Networking
	1.5.3 XML and directories

	1.6 Directory management
	1.7 Directory integration
	1.7.1 Integration via metadirectories

	1.8 Integration and federation via virtual directory technology
	1.9 Why this book?
	1.10 Summary

	Understanding the LDAP information model
	2.1 Information model overview
	2.1.1 Entries
	2.1.2 Attributes
	2.1.3 LDAP entries vs. database records

	2.2 Working with LDAP schema
	2.2.1 Standard LDAP schema

	2.3 Attribute types
	2.3.1 Defining attribute types
	2.3.2 Syntax definitions
	2.3.3 Matching rules for attributes
	2.3.4 Support for multiple values
	2.3.5 Inheritance
	2.3.6 User modification
	2.3.7 Variables in Java, Perl, and C

	2.4 Object classes
	2.4.1 Defining object classes
	2.4.2 Required and allowed attributes
	2.4.3 Object class inheritance
	2.4.4 Multiple object class memberships
	2.4.5 Object class types
	2.4.6 LDAP object classes and Java or C++ classes

	2.5 Using object modeling to design LDAP schema
	2.5.1 Modeling classes
	2.5.2 Modeling relationships
	2.5.3 Modeling object instances

	2.6 Summary

	Exploring the LDAP namespace
	3.1 What is a namespace?
	3.1.1 Hierarchical namespaces

	3.2 Specifying distinguished names
	3.2.1 Choosing a relative distinguished name attribute
	3.2.2 Determining the base

	3.3 Assigning the root naming context
	3.3.1 Traditional style of assigning the root name context
	3.3.2 Domain component style of assigning the root name context

	3.4 Selecting and designing a directory tree
	3.4.1 Intranet directories
	3.4.2 Internet directories
	3.4.3 Extranet directories

	3.5 Summary

	Search criteria
	4.1 Performing a search
	4.2 Where to search: base and scope
	4.2.1 Search base
	4.2.2 Search scope

	4.3 What to evaluate: search filters
	4.3.1 Presence filters
	4.3.2 Exact equality filters
	4.3.3 Substring matching
	4.3.4 Ordered matching (greater than/less than)
	4.3.5 Approximate filters
	4.3.6 Multiple filters: AND and OR operators
	4.3.7 Negative filters: the NOT operator
	4.3.8 Extensible searching and matching rules

	4.4 What to return: the attribute return list
	4.5 LDAP search criteria vs. SQL queries
	4.5.1 Similarities between SQL SELECT and LDAP search criteria
	4.5.2 Differences between SQL SELECT and LDAP search criteria

	4.6 Increasing search performance
	4.7 Summary

	Exchanging directory information
	5.1 Representing directory information outside the directory
	5.2 LDAP Data Interchange Format
	5.2.1 Expressing entries in basic LDIF
	5.2.2 Writing LDAP changes as LDIF
	5.2.3 Representing schemas in LDIF
	5.2.4 Advantages and disadvantages of LDIF

	5.3 Directory Services Markup Language
	5.3.1 Why use DSML?
	5.3.2 Getting started with DSML
	5.3.3 A DSML example
	5.3.4 Handling binary values in DSML entries
	5.3.5 Entry changes and DSML

	5.4 Defining directory schemas with DSML
	5.4.1 DSML object classes
	5.4.2 DSML attribute types

	5.5 XSLT and DSML
	5.5.1 Converting DSML to HTML using XSLT

	5.6 Summary

	LDAP management
	Accessing LDAP directories with Perl
	6.1 LDAP access from Perl
	6.2 Getting started with Net::LDAP
	6.2.1 Using the module
	6.2.2 Opening a connection
	6.2.3 Binding to the directory

	6.3 Searching with Net::LDAP
	6.3.1 Performing a search
	6.3.2 Understanding search scopes
	6.3.3 LDAP search filters
	6.3.4 Using search results
	6.3.5 Limiting attribute retrieval
	6.3.6 Handling referrals

	6.4 Manipulating entries
	6.4.1 Updating an entry
	6.4.2 Adding new entries
	6.4.3 Deleting an entry
	6.4.4 Renaming an entry

	6.5 Comparing entries
	6.6 Handling errors
	6.7 Support for encrypted/SSL connections
	6.8 Summary

	Managing directory entries, groups, and accounts
	7.1 Common types of managed entries
	7.2 Entry management models
	7.2.1 Centralized administration
	7.2.2 Distributed administration
	7.2.3 User self-administration/self-service

	7.3 Creating people entries
	7.3.1 People entries via a web form
	7.3.2 People entries based on existing data
	7.3.3 Summary of creating entries

	7.4 Creating and maintaining groups
	7.4.1 Explicit groups
	7.4.2 Dynamic groups and LDAP URLs

	7.5 Representing and managing account information
	7.5.1 Unix user accounts
	7.5.2 Linking Unix accounts to people

	7.6 Managing other information
	7.6.1 Security services information
	7.6.2 DNS information
	7.6.3 Directory Enabled Networking information
	7.6.4 Card catalog information

	7.7 Summary

	Synchronizing LDAP information
	8.1 Approaches to data flow management
	8.1.1 Replication
	8.1.2 File export/import
	8.1.3 Scripting

	8.2 Data flow analysis
	8.2.1 Schema mapping
	8.2.2 Determining the authoritative source
	8.2.3 Data transformation
	8.2.4 Namespace translation

	8.3 Interchange formats
	8.3.1 LDAP Data Interchange Format
	8.3.2 Directory Services Markup Language

	8.4 Migration to LDAP
	8.4.1 Migrating a simple table
	8.4.2 Migrating from multiple sources
	8.4.3 Adding new information to existing entries

	8.5 Joining related information
	8.5.1 Multikey matches
	8.5.2 Fuzzy matching

	8.6 Synchronization
	8.6.1 Synchronization to LDAP
	8.6.2 Synchronization from LDAP
	8.6.3 Bidirectional synchronization

	8.7 Summary

	Accessing operational information in LDAP
	9.1 Getting server information
	9.1.1 Retrieving available root naming contexts
	9.1.2 Extracting object class information
	9.1.3 Getting attribute type details

	9.2 Monitoring with LDAP
	9.2.1 Getting the monitor’s name
	9.2.2 Reading the monitor information
	9.2.3 Polling the monitor entry

	9.3 Testing replication
	9.4 Summary

	DSML: getting under the hood
	10.1 DSML parsing with SAX
	10.1.1 Basics of parsing XML with SAX
	10.1.2 A simple XML parser handler
	10.1.3 Parsing a simple document
	10.1.4 PerlSAX’s built-in error checking

	10.2 Parsing DSML into a Perl object
	10.2.1 Beginnings of a useful DSML parser handler
	10.2.2 Handling elements in the DSML file
	10.2.3 Extracting characters between start and end tags
	10.2.4 Preparing to use DSMLHandler
	10.2.5 Invoking the SAX parser using DSMLHandler

	10.3 Generating DSML
	10.3.1 Writing directory entries
	10.3.2 Converting RFC-style LDAP schemas to DSML LDAP schemas
	10.3.3 Conversion example for object classes
	10.3.4 Converting attribute types

	10.4 Using Perl to convert DSML with XSLT
	10.4.1 Converting DSML to HTML

	10.5 Summary

	Application integration
	Accessing LDAP directories with JNDI
	11.1 Introduction to JNDI
	11.1.1 JNDI versus the LDAP Java SDK

	11.2 JNDI architecture
	11.2.1 JNDI providers
	11.2.2 The JNDI package

	11.3 JNDI operations: the DirContext class
	11.3.1 Handling basic exceptions
	11.3.2 Closing the connection
	11.3.3 Binding to the directory
	11.3.4 A reusable LDAP connection handler

	11.4 Searching with JNDI
	11.4.1 Abstracting the entry
	11.4.2 A search class

	11.5 Adding entries
	11.5.1 A simple add example
	11.5.2 A generalized add example

	11.6 Manipulating entries
	11.6.1 Modifying entries
	11.6.2 Deleting entries
	11.6.3 Renaming entries

	11.7 Summary

	Java programming with DSML
	12.1 Writing DSML with Java
	12.2 DSML with JNDI
	12.2.1 Automatic DSML output from LDAP URLs

	12.3 Working with schemas in DSML
	12.3.1 Reading schemas with SAX
	12.3.2 Designing a basic SAX handler

	12.4 Transformation with XSLT in Java
	12.5 Enhancements with DSMLv2
	12.5.1 Implementing interapplication communication
	12.5.2 Creating DSMLv2 SOAP requests
	12.5.3 Creating DSMLv2 SOAP requests with JNDI

	12.6 Summary

	Application security and directory services
	13.1 The relationship between security and directories
	13.1.1 What is security?
	13.1.2 How LDAP provides security

	13.2 Storing key and certificate data
	13.2.1 Preshared secret keys
	13.2.2 Public/private key pairs

	13.3 Using digital certificates
	13.3.1 Creating a digital certificate in Java
	13.3.2 Storing and distributing digital certificates

	13.4 Managing authorization information
	13.4.1 Understanding access control rules
	13.4.2 Directory authorization
	13.4.3 Application authorization

	13.5 Encrypting LDAP sessions using JNDI and SSL
	13.6 Summary

	Standard schema reference
	A.1 Standard object classes
	alias
	certificationAuthority
	country
	cRLDistributionPoint
	device
	dmd
	extensibleObject
	groupOfNames
	groupOfUniqueNames
	inetOrgPerson
	locality
	organization
	organizationalPerson
	organizationalRole
	organizationalUnit
	person
	residentialPerson
	strongAuthenticationUser
	subschema
	top

	A.2 Standard attribute types
	aliasedObjectName
	altServer
	attributeTypes
	authorityRevocationList
	businessCategory
	c
	cACertificate
	carLicense
	certificateRevocationList
	cn
	createTimestamp
	creatorsName
	crossCertificatePair
	dITContentRules
	dITStructureRules
	deltaRevocationList
	departmentNumber
	description
	destinationIndicator
	displayName
	distinguishedName
	dmdName
	dnQualifier
	employeeNumber
	employeeType
	enhancedSearchGuide
	facsimileTelephoneNumber
	generationQualifier
	givenName
	houseIdentifier
	initials
	internationalISDNNumber
	jpegPhoto
	l
	ldapSyntaxes
	matchingRules
	matchingRuleUse
	member
	modifiersName
	modifyTimestamp
	name
	nameForms
	namingContexts
	o
	objectClass
	objectClasses
	ou
	owner
	physicalDeliveryOfficeName
	postalAddress
	postalCode
	postOfficeBox
	preferredDeliveryMethod
	preferredLanguage
	presentationAddress
	protocolInformation
	registeredAddress
	roleOccupant
	searchGuide
	seeAlso
	serialNumber
	sn
	st
	street
	subschemaSubentry
	supportedAlgorithms
	supportedApplicationContext
	supportedControl
	supportedExtension
	supportedLDAPVersion
	supportedSASLMechanisms
	telephoneNumber
	teletexTerminalIdentifier
	telexNumber
	title
	uniqueMember
	userCertificate
	userPassword
	userPKCS12
	userSMIMECertificate
	x121Address
	x500UniqueIdentifier

	PerLDAP
	B.1 Overview of PerLDAP
	B.1.1 The Conn class
	B.1.2 The Entry class
	B.1.3 LDAP messages
	B.1.4 LDIF

	B.2 Examples from chapter 7: entry management
	B.3 Examples from chapter 8: migration and synchronization
	B.4 Examples from chapter 9: server management and monitoring
	B.5 PerLDAP-only functionality
	B.5.1 Rebinding to another server
	B.5.2 Adding and removing values with DN syntax
	B.5.3 Copying and moving attributes
	B.5.4 Forcing a change

	index

